Skip to main content

Abstract

Most current confocal laser-scanning microscopes require <0.1 sec, more typically ~1 sec, to complete a single full scan of the field of view. Such speeds are considerably slower than conventional video displays or the psychophysical flicker-fusion frequency, so they give the visual impression of discontinuous image acquisition, rather than a smoothly evolving scene. This speed limitation is imposed by the scanning rates of conventional scanners based on linear servo galvanometers, not from any inherent feature of the confocal principle. Scanning at video rate has many advantages. The most obvious but not necessarily the most important is the psychophysical appearance of smooth motion or evolution, which greatly aids the user to locate and focus on regions of interest. Many biochemical signals inside living cells, particularly membrane potential and cytosolic free Ca2+and Na+, undergo changes in the time scale of seconds down to tenths of milliseconds. Such signals are especially important in neurobiology because neurons rely on such biochemistry to perform their special function of fast information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y., 1991, Fluorescence ratio imaging of cyclic AMP in single cells. Nature349:694–697.

    Article  PubMed  CAS  Google Scholar 

  • Adams, S.R., Bacskai, B.J., Taylor, S.S., and Tsien, R.Y., 1993, Optical probes for cyclic AMP. In: Fluorescent Probes for Biological Activity of Living Cells—A Practical Guide(W.T. Mason, ed.), Academic Press, San Diego, pp. 133–149.

    Google Scholar 

  • Art, J.J., and Goodman, M.B., 1993, Rapid scanning confocal microscopy. In: Cell Biological Applications of Confocal Microscopy: Methods in Cell Biology(B. Matsumoto, ed.), Academic Press, San Diego, San Diego, pp. 44–77.

    Google Scholar 

  • Bacskai, B.J., Hochner, B., Mahaut-Smith, M., Adams, S.R., Kaang, B.-K., Kandel, E.R., and Tsien, R.Y., 1993, Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysiasensory neurons, Science260:222–226.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Sabban, J., Rodier, J.C., Roussel, A., and Simon, J., 1984, Ophthalmoscope—A balayage optique. J. Optics (Paris)15:425–430.

    Article  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science248:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, L.D., and Sincerbox, G.T., 1991, Holographic scanners for bar code readers. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 159–212.

    Google Scholar 

  • Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laser-scanning reflected and fluorescence microscope, Scanning10:139–145.

    Article  Google Scholar 

  • Draaijer, A., and Houpt, P.M., 1993, High scan-rate confocal laser scanning microscopy. In: Electronic Light Microscopy: Techniques in Modern Biomedical Microscopy(D. Shotton, ed.), Wiley-Liss, New York, pp. 273–287.

    Google Scholar 

  • Froome, K.D., and Essen, L., 1969, The Velocity of Light and Radio Waves, Academic Press.

    Google Scholar 

  • Gan, X.S., and Sheppard, C.J.R., 1993, Detectability: A new criterion for evaluation of the confocal microscope, Scanning15:187–192.

    Article  Google Scholar 

  • Goldstein, S.R., Hubin, T., Rosenthal, S., and Washburn, C., 1990, A confocal video-rate laser-beam scaning reflected-light microscope with no moving parts, J. Microsc.157:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, S.R., Hubin, T., and Smith, T.G., Jr., 1992, An improved no-moving-parts video-rate confocal microscope, Micron Microsc. Acta23:437–446.

    Article  Google Scholar 

  • Gottlieb, M., 1991, Acoustooptic scanners and modulators. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 615–686.

    Google Scholar 

  • Kramer, C.J., 1991, Holographic deflector for graphic arts systems. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 213–350.

    Google Scholar 

  • Marshall, G.F. (ed.), 1991, Optical Scanning, Marcel Dekker, New York.

    Google Scholar 

  • Minta, A., Kao, J.P.Y., and Tsien, R.Y., 1989, Fluorescent indicators for cytoso-lic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem.264:8171–8178.

    PubMed  CAS  Google Scholar 

  • Montagu, J.I., 1991, Galvanometric and resonant low-inertia scanners. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 525–613.

    Google Scholar 

  • Niggli, E., and Lederer, W.J., 1990, Real-time confocal microscopy and calcium measurements in heart muscle cells: Towards the development of a fluorescence microscope with high temporal and spatial resolution, Cell Calcium11:121–130.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, R., Simpson, A.W.M., Brini, M., and Pozzan, T., 1992, Rapid changes of mitochondrial Ca2+revealed by specifically targeted recombinant aequorin, Nature358:325–327.

    Article  PubMed  CAS  Google Scholar 

  • Round, F.E., Crawford, R.M., and Mann, D.G., 1990, The Diatoms: Biology and Morphology of the Genera, Cambridge University Press, New York.

    Google Scholar 

  • Sammak, P.J., Adams, S.R., Harootunian, A.T., Schliwa, M., and Tsien, R.Y., 1992, Intracellular cyclic AMP not Ca2+determines the direction of vesicle movement in melanophores: Direct measurements by fluorescence ratio imaging, J. Cell Biol.117:57–72.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, J., 1991a, Bearings for rotary scanners. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 477–524.

    Google Scholar 

  • Shepherd, J., 1991b, Windage of rotating polygons. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 451–476.

    Google Scholar 

  • Sherman, R.J., 1991, Polygonal scanners: Applications, performance, and design. In: Optical Scanning(G.F. Marshall, ed.), Marcel Dekker, New York, pp. 351–408.

    Google Scholar 

  • Sims, P.A., 1983, A taxonomic study of the genus Epithemiawith special reference to the type species E. turgida(Ehrenb.) Kütz, Bacillaria6:211–235.

    Google Scholar 

  • Takamatsu, T., and Wier, W.G., 1990, High temporal resolution video imaging of intracellular calcium, Cell Calcium11:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, W.H., 1984, Characteristics of a new compact video rate optical scanner (CVROS), SPIE 518:7–14.

    Article  Google Scholar 

  • Toyen, G., 1976, Generation of precision pixel clock in laser printers and scanners, SPIE 84:138–145.

    Article  Google Scholar 

  • Tsien, R.Y., Bacskai, B.J., and Adams, S.R., 1993, FRET for studying intracellular signalling, Trends Cell Biol. 3:242–245.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R.Y., and Harootunian, A.T., 1990, Practical design criteria for a dynamic ratio imaging system, Cell Calcium 11:93–109.

    Article  PubMed  CAS  Google Scholar 

  • Webb, R.H., Hughes, G.W., and Pomerantzeff, O., 1980, Flying spot TV ophthalmoscope, Appl. Optics 19:2991–2997.

    Article  CAS  Google Scholar 

  • Webb, R.H., 1984, Optics for laser rasters. Appl. Optics 23:3680–3683.

    Article  CAS  Google Scholar 

  • Webb, R.H., Hughes, G.W., and Delori, F.C., 1987, Confocal scanning laser ophthalmoscope, Appl. Optics 26:1492–1499.

    Article  CAS  Google Scholar 

  • White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tsien, R.Y., Bacskai, B.J. (1995). Video-Rate Confocal Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics