Skip to main content

Explicit Construction of the Hilbert Class Fields of Imaginary Quadratic Fields by Integer Lattice Reduction

  • Conference paper
Number Theory

Abstract

Motivated by a constructive realization of generalized dihedral groups as Galois groups over Q and by Atkin’s primality test, we present an explicit construction of the Hilbert class fields (ring class fields) of imaginary quadratic fields (orders). This is done by first evaluating the singular moduli of level one for an imaginary quadratic order, and then constructing the “genuine” (i.e., level one) class equation. The equation thus obtained has integer coefficients of astronomical size, and this phenomenon leads us to the construction of the “reduced” class equations, i.e., the class equations of the singular moduli of higher levels. These, for certain levels, turn out to define the same Hilbert class field (ring class field) as the level one class equation, and to have coefficients of small size (e.g., seven digits). The construction of the “reduced” class equations was carried out on MACSYMA, using a refinement of the integer lattice reduction algorithm of Lenstra-Lenstra-Lavász, implemented on the Symbolics 3670 at Rensselaer Polytechnic Institute.

Erich Kaltofen was partially supported by the NSF Grant No. CCR-87–05363 and by an IBM Faculty Development Award. Noriko Yui was partially supported by the NSERC Grants No. A8566 and No. A9451, and by an Initiation Grant at Queen’s University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berwick, W.E.H. , Modular Invariants expressible in terms of quadratic and cubic irrationalities. Proc. London Math. Soc. (2), 28 (1928), pp. 53–69.

    Article  MathSciNet  MATH  Google Scholar 

  2. Borel, A., Chowla, S. , Herz, C.S., Iwasawa, K. , and Serre, J.-P., Seminar on Complex Multiplication. Lecture Notes in Mathematics 21 (1966), Springer-Verlag.

    MATH  Google Scholar 

  3. Bruen, A., Jensen, C.U., and Yui, N. , Polynomials with Frobenius groups of prime degree as Galois Groups II. Journal of Number Theory 24 (1986). pp. 305–359.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohn, H., Introduction to the Construction of Class Fields. Cambridge Studies in Advanced Mathematics 6, Cambridge University Press, 1985.

    MATH  Google Scholar 

  5. Cox, David, Primes of the form x2 + ny2 : From Fermat to Class Field Theory and Complex Multiplication. John Wiley and Sons (1989) (to appear).

    Google Scholar 

  6. Deuring, M., Teilbarkeitseigenschaften der singulären Moduln der elliptischen Funktionen und die Diskriminante der Klassengleichung, Commentarii Mathematici Helvetici 19 (1946), pp. 74–82.

    Article  MathSciNet  MATH  Google Scholar 

  7. Deuring, M., Die Klassenkorper der komplexen Multiplikation. Enzyklopädie Math. Wiss, 12 (Book 10, Part II), Teubner, Stuttgart 1958.

    Google Scholar 

  8. Dorman, D., Singular moduli, modular polynomials, and the index of the closure of ℤ[j(z)] in ℚ(j(z)), Math. Ann. 283 (1989), pp. 177–191.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dorman, D., Special values of the elliptic modular function and factorization formulae. J. Reine Angew. Math. 383 (1988), pp. 207–220.

    MathSciNet  MATH  Google Scholar 

  10. Goldfeld, D., Gauss’ class number problem for imaginary quadratic fields. Bull. Americian Math. Soc. (New Series) 13 (1985), pp. 23–37.

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldwasser, S., and Kilian, J., Almost all primes can be quickly certified. Proc. 18th Annual ACM Symp. on Theory of Computing (1986), pp. 316–329.

    Google Scholar 

  12. Gross, B., and Zagier, D., On singular moduli., J. Reine Angew. Math. 355 (1985), pp. 191–220.

    MathSciNet  MATH  Google Scholar 

  13. Gross, B., and Zagier, D., Heegner points and derivatives of L-series. Invent. math. 84 (1986), pp. 225–320.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hanna, M., The modular equations. Proc. London Math. Soc. (2) 28 (1928), pp. 46–52.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hermann, O., Über die Berechnung der Fouriercoeffizienten der Funktion j(r), J. Reine Angew. Math. 274 (1973), pp. 187–195.

    Google Scholar 

  16. Jensen, C.U., and Yui, N., Polynomials with Dp as Galois group. Journal of Number Theory 15 (1982), pp. 347–375.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaltofen, E. , On the complexity of finding short vectors in integer lattices, Proc. EUROCAL ‘83, Lecture Notes in Computer Science 162 (1983), pp. 236–244, Springer-Verlag.

    Google Scholar 

  18. Kaltofen, E., Polynomial Factorization 1982–1986. Tech. Report 86–19, Dept. Comp. Sci., Rensselaer Polytech. Inst., Sept.(1986).

    Google Scholar 

  19. Kaltofen, E., Valente, T., and Yui, N. , An improved Las Vegas prlmalltv test. ISSAC ‘89, Portland, Oregon (1989) (to appear).

    Google Scholar 

  20. Kaltofen, E., and Yui, N., Explicit construction of the Hilbert class fields of imaginary quadratic fields with class numbers 7 and 11, EUROSAM ‘84, Lecture Notes in Computer Science 174 (1984), pp. 310–320, Springer-Verlag.

    Google Scholar 

  21. Kaltofen, E., and Yui, N., On the modular equations of order 11, Proc. of the 1984 MACSYMA USERS CONFERENCE (1984), pp. 472–485, General Electric.

    Google Scholar 

  22. Kannan, R., Algebraic geometry of numbers, in Annual Review in Computer Science 2, edited by J.F. Traub (1987), pp. 231–67. Annual Reviews Inc.

    Google Scholar 

  23. Kannan, R., Lenstra, A.K., and Lovász, L., Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers, Math. Comp. 50, (1988), pp. 235–250 .

    Article  MathSciNet  MATH  Google Scholar 

  24. Kannan, R. and McGeoch, L.A., Basis reduction and the evidence for transcendence of certain numbers, Manuscript (1984).

    Google Scholar 

  25. Lenstra, A.K., Lenstra, H.W., and Lovász, L., Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), pp. 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lenstra, A.K., and Lenstra, H.W., Algorithms in Number Theory, Handbook of Theoretical Computer Science (1989) (to appear).

    Google Scholar 

  27. Mestre, J.-F., Courves elliptiques et groupes de classes d’ideaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), pp. 23–35.

    MathSciNet  MATH  Google Scholar 

  28. Morain F., Implementation of the Goldwasser-Kilian-Atkin primality testing algorithm, Univesity of Limoges, INRIA, preprint (1988).

    Google Scholar 

  29. Schertz, R., Die singularen Werte der Weberschen Funktionen f , f1 , f2, γ 2, γ3, J. Reine Angew. Math. 286/287 (1976), pp. 46–47.

    MathSciNet  Google Scholar 

  30. Schonhage, A., Factorization of univariate integer polynomials by diophantine approximation and an improved basis reduction algorithm, Proc. ICALP ‘84, Lecture Notes in Computer Science 172 (1984), pp. 436–447. Springer-Verlag. Smith, H.J.S., Note on the modular equation for the transformat ion of the third order, Proc. London Math. Soc. 10 (1878), pp. 87–91.

    Google Scholar 

  31. Watson, G.N., Singular moduli (1), Quart. J. Math. 3 (1932), pp. 81–98.

    Article  Google Scholar 

  32. Watson, G.N., Singular moduli (2), Quart. J. Math. 3 (1932), pp. 189–212.

    Article  Google Scholar 

  33. Watson, G.N., Singular moduli (3), Proc. London Math. Soc. 40 (1936), pp. 83–142.

    Article  Google Scholar 

  34. Watson, G.N, Singular moduli (4), Acta Arithmetica 1 (1935), pp. 284–323.

    Google Scholar 

  35. Weber, H., Lehrbuch der Algebra Bd. III, Branschweig 1908.

    Google Scholar 

  36. Williamson, C.J., Odd degree polynomials with dihedral Galois groups, Thesis, Berkeley (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this paper

Cite this paper

Kaltofen, E., Yui, N. (1991). Explicit Construction of the Hilbert Class Fields of Imaginary Quadratic Fields by Integer Lattice Reduction. In: Chudnovsky, D.V., Chudnovsky, G.V., Cohn, H., Nathanson, M.B. (eds) Number Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4158-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4158-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97670-9

  • Online ISBN: 978-1-4757-4158-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics