Skip to main content

Transcription and Translation: Processes and Basic Regulation

  • Chapter
Bacterial and Bacteriophage Genetics
  • 371 Accesses

Abstract

This chapter summarizes processes involved in using genetic information and synthesizing RNA and proteins. These are highly energy-intensive syntheses, and their proper regulation is very important to a cell’s competitiveness. The final section of this chapter presents basic transcription regulatory mechanisms and the concepts of the operon and regulon. Advanced regulatory topics are found in Chapter 14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Adhya, S. (1996). Negative Control of Transcription, pp. 1503–1512. In: Neidhardt, F.C., Ingraham, J.L, Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E. (eds.), Escherichia coli and Salmonella typhinurium: Cellular and NMolecular Biology. 2 vols. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Babitzke, P. (1997). Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how Bacillus subtilis reinvented the wheel. Molecular Microbiology 26: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Bell, S.D., Jackson, S.P. (1998). Transcription and translation in Archaea: a mosaic of Eukaryal and Bacterial features. Trends in Microbiology 6: 222–228.

    CAS  Google Scholar 

  • Brewer, B.J. (1990). Replication and the transcriptional organization of the Escherichia coli chromosome, pp. 61–83. In: Drlica, K., Riley, M. (eds.), The Bacterial Chromosome. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Burkhardt, N., Jünemann, R., Spahn, C.M.T., Nierhaus, K.H. (1998). Ribosomal tRNA binding sites: Three-site models of translation. Critical Reviews in Biochemistry and lMlolecular Biology 33: 95–149.

    Article  CAS  Google Scholar 

  • Coulombe, B., Burton, Z.F. (1999). DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiology and Molecular Biology Reviews 63: 457–478.

    PubMed  CAS  Google Scholar 

  • Dennis, P.P. (1993). The molecular biology of halophilic archaebacteria, pp. 255–287. In: Vreeland, R.H., Hochstein, L.I. (eds.), The Biology of Halophilic Bacteria. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Farabaugh, P.J. (1996). Programmed translational frameshifting. Microbiological Reviews 60: 103–134.

    PubMed  CAS  Google Scholar 

  • Eick, D., Wedel, A., Heumann, H. (1994). From initiation to elongation: comparison of transcription by prokaryotic and eukaryotic RNA polymerases. Trends in Genetics 10: 292–296.

    Article  PubMed  CAS  Google Scholar 

  • Von Hippel, P.H. (1998). An integrated model of the transcription complex in elongation, termination, and editing. Science 281: 660–665. (A summary of findings from E. coli.)

    Article  Google Scholar 

  • Mooney, R.A., Artsimovitch, I., Landick, R. (1998). Information Processing by RNA Polymerase: Recognition of Regulatory Signals During RNA Chain Elongation. Journal of Bacteriology 180: 3265–3275. (This review compares RNA polymerase to a Turing machine and presents a model for function.)

    PubMed  CAS  Google Scholar 

  • Müller-Hill, B. (1996). The lac Operon: A Short History of a Genetic Paradigm. Berlin, Walter de Gruyter. (A very readable summary of the history of the lac operon and our present state of knowledge.)

    Google Scholar 

  • Perez-Martin, J., de Lorenzo, V. (1997) Clues and consequences of DNA bending in transcription. Annual Review of Microbiology 51: 593–628.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, C., Konan, K.V.,Sarsero, J.P. (1996). Some novel transcription attenuation mechanisms used by bacteria. Biochimie 78: 1017–1024.

    Article  PubMed  CAS  Google Scholar 

Specialized

  • Ajdic, D., Ferretti, J.J. (1998). Transcriptional regulation of the Streptococcus mutans gal operon by the galR repressor. Journal of Bacteriology 180: 5727–5732.

    PubMed  CAS  Google Scholar 

  • Aki, T, Adhya, S. (1997). Repressor induced site-specific binding of HU for transcriptional regulation. The EMBO Journal 16: 3666–3674.

    Article  PubMed  CAS  Google Scholar 

  • Bashyam, M.D., Tyagi, A.K. (1998). Identification and Analysis of “Extended-10” Promoters from Mycobacteria. Journal of ßacteriology 180: 2568–2573.

    CAS  Google Scholar 

  • Bessarab, D.A., Kaberdin, V.R., Wei, C.L., Liou, G.G., Lin, C.S. (1998). RNA components of Escherichia coli degradosome: Evidence for rRNA decay. Proceedings of the National Academy of Sciences USA 95: 3157–3161.

    Article  CAS  Google Scholar 

  • Chien, Y.-T., Helmann, J.D., Zinder, S.H. (1998). Interactions between the Promoter Regions of Nitrogenase Structural Genes (nifHDK2) and DNABinding Proteins from N(inf2)- and Ammonium-Grown Cells of the Archaeon Methanosarcina barkeri 227. Journal of IBacteriology 180: 2723–2728.

    CAS  Google Scholar 

  • Geanacopoulos, M., Adhya, S. (1997). Functional characterization of roles of GaIR and GalS as regulators of the gal regulon. Journal of Bacteriology 179: 228–234.

    PubMed  CAS  Google Scholar 

  • Gohl, H.P., Gröndahl, B., Thomm, M. (1995). Promoter recognition in archaea is mediated by transcription factors: Identification of transcription factor αTFB from Methanococcus thermolithotrophicus as archaeal TATA-binding protein. Nucleic Acids Research 23: 3837–3841.

    Article  PubMed  CAS  Google Scholar 

  • Van de Guchte, M., Ehrlich, S.D., Chopin, A. (1998). tRNATrP as a key element on antitermination in the Lactococcus lactis trp operon. Molecular Microbiology 29: 61–74.

    Article  PubMed  Google Scholar 

  • Hogema, B.M., Arents, J.C., Bader, R., Eijkemans, K., Inada, T., Aiba, H., Postma, P W. (1998). Inducer exclusion by glucose 6-phosphate in Escherichia coli. Molecular Microbiology 28: 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D.E.A., Geanacopoulos, M., Adhya, S. (1999). Role of HU and DNA supercoiling in transcription repression: Specialized nucleoprotein repression complex at gal promoters in Escherichia coli. Molecular Microbiology 31: 451–461.

    Article  CAS  Google Scholar 

  • Oehler, S., Amouyal, M., Kolkhof, P., von Wilcken-Bergmann, B., Müller-Hill, B. (1994). Quality and position of the three lac operators of E. coli define efficiency of repression. The EMBBO Journal 13: 3348–3355.

    CAS  Google Scholar 

  • Reinhold-Hurek, B., Shub, D.A. (1992). Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357: 173–176.

    Article  PubMed  CAS  Google Scholar 

  • Yarnell, W.S., Roberts, J.W. (1999). Mechanism of intrinsic transcription termination and antitermination. Science 284: 611–615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (2000). Transcription and Translation: Processes and Basic Regulation. In: Bacterial and Bacteriophage Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3258-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3258-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3260-3

  • Online ISBN: 978-1-4757-3258-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics