Skip to main content

DNA Repair Pathways and Cancer Prevention

  • Chapter
Advances in Nutrition and Cancer 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 472))

Abstract

This article describes the five main classes of DNA repair processes that occur in humans with respect to their mechanism of action, major substrates, and role in protection against endogenous and environmental DNA damaging agents. The importance of all of these processes in protection from the initiation of neoplastic growth has been established either in studies of inheritable diseases affecting DNA repair or experiments with transgenic animals or both. The capacity of DNA repair pathways to deal with DNA damage is therefore a critical factor in the cellular response to environmental, and dietary carcinogens. DNA repair activity and factors affecting this activity either directly or indirectly must be taken into account in risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sancar, A. DNA Excision Repair, Annu. Rev. Biochem. 65: 43–81, 1996.

    Article  CAS  Google Scholar 

  2. Wood, R.D. Nucleotide excision repair in mammalian cells, J. Biol. Chem. 272: 23465–23468, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Cleaver, J.E. and States, J.C. The DNA-damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein, Biochem. J. 328:1–12, 1997.

    PubMed  CAS  Google Scholar 

  4. Sugasawa, K., Ng, J.M.Y., Masutani, C., Iwai, S., van der Spek, P.J., Eker, A.P.M., Hanaoka, F, Bootsma, D., and Hoeijmakers, J.H.J. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Molecular Cell. 2: 223–232, 1998.

    Article  PubMed  CAS  Google Scholar 

  5. Hanawalt, P.C. Genomic instability: environmental invasion and the enemies within, Mutation Res. 400: 117–125, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Sancar, A. DNA repair in humans, Annu. Rev. Genetics. 29: 69–105, 1995.

    Article  CAS  Google Scholar 

  7. Kraemer, K.H. Sunlight and skin cancer: Another link revealed, Proc. Natl. Acad. Sci. USA. 94: 11–14, 1997.

    Article  PubMed  CAS  Google Scholar 

  8. Ford, J.M. and Hanawalt, P.C. Role of DNA Excision Repair Gene Defects in the Otiology of Cancer. In: M.B. Kastan (ed.) Current Topics in Microbiology and Immunology, Vol. 221, pp. 47–70. Heidelberg: Springer-Verlag, 1997.

    Google Scholar 

  9. Friedberg, E.C., Meira, L.B., and Cheo, D.L. Database of mouse strains carrying targeted mutations in genes affecting cellular responses to DNA damage. Version 2, Mutation Res. 407: 217–226, 1998.

    CAS  Google Scholar 

  10. Krokan, H.E., Standahl, R., and Slupphaug, G. DNA glycosylases in the base excision repair of DNA, Biochem. J. 325: 1–16, 1997.

    PubMed  CAS  Google Scholar 

  11. Wilson III, D.M. and Thompson, L.H. Life without DNA repair, Proc. Natl. Acad. Sci. USA. 94:12754–12757, 1997.

    Article  Google Scholar 

  12. Elder, R.H., Jansen, J.G., Weeks, R.J., Willington, M.A., Deans, B., Watson, A.J., Mynett, K.J., Bailey, J.A., and Margison, G.P. Alkylpurine-DNA-N-glycosylase knockout mice show increased susceptibility to induction of mutations by methyl methanesulfonate, Mol. Cell. Biol. 18: 5828–5837, 1998.

    PubMed  CAS  Google Scholar 

  13. Allan, J.A., Engelward, B.P., Dreslin, A.J., Wyatt, M.D., Tomasz, M., and Samson, L.D. Mammalian 3methyladenine DNA glycosylase protects against the toxicity and clastogenicity of certain chemotherapeutic DNA cross-linking agents, Cancer Res. 58: 3965–3973, 1998.

    PubMed  CAS  Google Scholar 

  14. Kaina, B. Critical steps in alkylation-induced aberration formation, Mutation Res. 404: 119–124, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Glassner, B.J., Rasmussen, L.J., Najarian, M.T., Posnick, L.M., and Samson, L.D. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair, Proc. Natl. Acad. Sci. USA. 95: 9997–10002, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Cerda, S.R., Turk, P.W., Thor, A.D., and Weitzman, S.A. Altered expression of the DNA repair protein, N-methylpurine-DNA glycosylase (MPG) in breast cancer, FEBS Lett. 431: 12–18, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Parikh, S.S., Mol, C.D., and Tainer, J.A. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway, Structure. 5: 1543–1550, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Parikh, S.S., Mol, C.D., Slupphaug, G., Bharati, S., Krokan, H.E., and Tainer, J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA, Embo. J. 17: 5214–5226, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Chevillard, S., Radicella, J.E, Levalois, C., Lebeau, J., Poupon, M.-F, Oudard, S., Dutrillaux, B., and Boiteux, S. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumors, Oncogene. 16: 3083–3086, 1998.

    Article  PubMed  CAS  Google Scholar 

  20. Shinmura, K., Kohno, T., Kasai, H., Koda, K., Sugimura, H., and Yokota, J. Infrequent mutations of the hOGG1 gene that is involved in the excision of 8-hydroxyguanine in damaged DNA, in human gastric cancer, Jpn. J. Cancer Res. 89: 825–828, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Modrich, P. and Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology, Ann. Rev. Biochem. 65: 101–133, 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Tindall, K.R., Glaab, W.E., Umar, A., Risinger, J.I., Koi, M., Barrett, J.C., and Kunkel, T.A. Complementation of mismatch repair gene defects by chromosome transfer, Mutation Res. 402: 15–22, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson III, D.M., Carney, J.P., Coleman, M.A., Adamson, A.W., Christensen, M., and Lamerdin, J.E. Hexl: a new human Rad2 nuclease family member with homology to yeast exonuclease 1, Nucleic Acid Res. 26: 3762–3768, 1998.

    Article  PubMed  CAS  Google Scholar 

  24. Davis, T.W., Wilson-Van Patten, C., Meyers, M., Kunugi, K.A., Cuthil, S., Reznikoff, C., Garces, C., Boland, C.R., Kinsella, T.J., Fishel, R., and Boothman, D.A. Defective expression of the DNA mismatch reapir protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation, Cancer Res. 58: 767–778, 1998.

    PubMed  CAS  Google Scholar 

  25. Toft, N.J. and Arends, M.J. DNA Mismatch Repair and Colorectal Cancer, J. Patho1. 185: 123–129, 1998.

    Article  CAS  Google Scholar 

  26. Veigl, M.L., Kasturi, L., Olechnowicz, J., Ma, A., Lutterbaugh, J.D., Periyasamy, S., Modrich, P., and Markowitz, S.D. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers, Proc. Natl. Acad. Sci. USA. 95: 8698–8702, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Prolla, T. DNA mismatch repair and cancer, Curr. Opinion in Cell Biol. 10: 311–316, 1998.

    Article  CAS  Google Scholar 

  28. Nicolaides, N.C., Littman, S.J.P.M., Kinzler, K.W., and Vogelstein, B. A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype, Mol. Cell. Biol. /8: 1635–1641, 1998.

    Google Scholar 

  29. Marra, G., Iaccarino, I., Lettieri, T., Roscilli, G., Delmastro, P., and Jiricny, J. Mismatch repair deficiency associated with overexpression of the MSH3 gene, Proc. Natl. Acad. Sci. USA. 95: 8568–8573, 1998.

    CAS  Google Scholar 

  30. Liang, F., Han, M., Romanienko, P.J., and Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells, Proc. Natl. Acad. Sci. USA. 95: 5172–5177, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Chu, G. Double strand break repair, J. Biol. Chem. 272: 24097–24100, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Jeggo, P.A., Can, A.M., and Lehmann, A.R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia, Trends in Genet. /4: 312–316, 1998.

    Google Scholar 

  33. Featherstone, C. and Jackson, S.P. DNA repair: The Nijmegen breakage syndrome protein, Current Biol. 8: R622 - R625, 1998.

    Article  CAS  Google Scholar 

  34. Carney, J.P., Maser, R.S., Olivares, H., Davis, E.M., Le Beau, M., Yates, J.R., III, and Petrini, J.H.J. The hMrell/hRad50 protein complex and Nijmegen breakage syndrome. Linkage of double-strand break repair to the cellular DNA damage response, Cell. 93: 477–486, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Pegg, A.E., Dolan, M.E., and Moschel, R.C. Structure, function and inhibition of O6-alkylguanineDNA alkyltransferase, Progr. Nucleic Acid Res. Mol. Biol. 51: 167–223, 1995.

    Article  CAS  Google Scholar 

  36. Goodtzova, K., Kanugula, S., Edara, S., Pauly, G.T., Moschel, R.C., and Pegg, A.E. Repair of O6benzylguanine by the Escherichia coil Ada and Ogt and the human 06-alkylguanine-DNA alkyltransferase., J. Biol. Chem. 272: 8332–8339, 1997.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, L., Spratt, T.E., X.-L., L., Hecht, S.S., Pegg, A.E., and Peterson, L.A. Pyridyloxobutyl adduct, 06-[4-oxo-4-(3-pyridyl)butyl]guanine, is present in 4-(acetoxymethylnitrosamino-1-(3-pyridyl)-1butanone-treated DNA and is a substrate for 06-alkylguanine-DNA alkyltransferase., Chem. Res. Toxicol. 10: 562–567, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Vora, R., Pegg, A.E., and Ealick, S.E. A new model for how 06-methylguanine-DNA methyltransferase binds DNA, Proteins. 32: 3–6, 1998.

    Article  PubMed  CAS  Google Scholar 

  39. Boldogh, I. Ramana, C.V., Chen, Z., Biswas, T., Hazra, T.K., Grösch, S., Grombacher, T., Mitra, S., and Kaina, B. Regulation of expression of the DNA repair gene 06-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling, Cancer Res. 58:3950–3956, 1998.

    Google Scholar 

  40. Edara, S., Kanugula, S., and Pegg, A.E. Expression of the inactive C145A mutant human O6alkylguanine-DNA alkyltransferase in E. coli increases cell killing and mutations by N-methyl-N’nitro-N-nitrosoguanidine., Carcinogenesis in press, 1998.

    Google Scholar 

  41. Qian, X.C. and Brent, T.P. Methylation hot spots in the 5’ flanking region denote silencing of the Q6methylguanine-DNA methyltransferase gene, Cancer Res. 57: 3672–3677, 1997.

    PubMed  CAS  Google Scholar 

  42. Gerson, S.L., Zaidi, N.H., Dumenco, L.L., Allay, E., Fan, C.Y., Liu, L., and O’Connor, P.J. Alkyltransferase transgenic mice: probes of chemical carcinogenesis, Mutation Res. 307: 541–555, 1994.

    Article  PubMed  CAS  Google Scholar 

  43. Kaina, B., Fritz, G., Ochs, K., Haas, S., Grombacher, T., Dosch, J., Christmann, M., Lund, P, Gregel, C.M., and Becker, K. Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds, and defense mechanisms, Mutation Res. 405: 179–191, 1998.

    Article  PubMed  CAS  Google Scholar 

  44. Iwakuma, T., Sakumi, K., Nakatsuru, Y., Kawate, H., Igarashi, H., Shiraishi, A., Tsuzuki, T., Ishikawa, T, and Sekiguchi, M. High incidence of nitrosamine-induced tumorigenesis in mice lacking DNA repair methyltransferase, Carcinogenesis. /8: 1631–1635, 1997.

    Google Scholar 

  45. Kawate, H., Sakumi, K., Tsuzuki, T, Nakatsuru, Y., Ishikawa, T., Takahashi, S., Takano, H., Noda, T., and Sekiguchi, M. Separation of killing and tumorigenic effects of an alkylating agent in mice defective in two of the DNA repair genes, Proc. Natl. Acad. Sci. USA. 95: 5116–5120, 1998.

    Article  PubMed  CAS  Google Scholar 

  46. Pegg, A.E. Mammalian 06-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenesis and therapeutic agents, Cancer Res. 50: 6119–6129, 1990.

    PubMed  CAS  Google Scholar 

  47. Kyrtopoulos, S.A. DNA adducts in humans after exposure to methylating agents, Mutation Res. 405: 135–143, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Oh, H.-K., Teo, A.K.-C., Ali, R.B., Lim, A., Ayi, T-C., Yarosh, D.B., and Li, B.F.-L. Conformational change in human DNA repair enzyme 06-methylguanine-DNA methyltransferase upon alkylation of its active site by SN1 (indirect-acting) and SN2 (direct acting) alkylating agents: breaking a “salt-link”?, Biochemistry. 35: 12259–12266, 1996.

    Article  PubMed  CAS  Google Scholar 

  49. Kahan, P. and Hampson, R. Genomic instability and tolerance to alkylating agents, Cancer Surveys. 28: 69–85, 1996.

    Google Scholar 

  50. Connor, E, Bertwistle, D., Mee, P.J., Ross, G.M., Swift, S., Grigorieva, E., Tybulewicz, V.L.J., and Ashworth, A. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation, Nature Genetics. 17: 423–430, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Patel, K.J., Yu, V.P.C.C., Lee, H., Corcoran, A., Thistlewaite, F.C., Evans, M.J., and Colledge, W.H. Involvement of Brca2 in DNA repair, Mol. Cell. /: 347–357, 1998.

    Google Scholar 

  52. Gowen, L.C., Avrutskaya, A.V., Latour, A.M., Koller, B.H., and Leadon, S.A. BRCA1 required for transcription-coupled repair of oxidative DNA damage, Science. 281: 1009–1012, 1998.

    Article  PubMed  CAS  Google Scholar 

  53. Parshad, R., Bohr, V.A., Cowans, K.H., Zujewski, J.A., and Sanford, K.K. Deficient DNA repair capacity, a predisposing factor in breast cancer, Br. J. Cancer. 74: 1–5, 1996.

    Article  PubMed  CAS  Google Scholar 

  54. Jyothish, B., Ankathil, R., Chandini, R., Vinodkumar, B., Nayar, G.S., Roy, D.D., Madhavan, J., and Nair, M.K. DNA repair proficiency: a potential marker for identification of high risk members in breast cancer families, Cancer Lett. 124:9–13, 1998.

    Article  PubMed  CAS  Google Scholar 

  55. Jeggo, P.A. DNA Repair: PARP—another guardian angel?, Current Biol. 8: R49 - R51, 1998.

    Article  CAS  Google Scholar 

  56. Le Rhun, Y., Kirkland, J.B., and Shah, G.M. Cellular responses to DNA damage in the absence of poly(ADP-ribose) polymerase, Biochem. Biophys. Res Comm. 245: 1–10, 1998.

    Article  PubMed  Google Scholar 

  57. Cristovao, L., Lechner, M.C., Leitäo, C.N., Mira, F.C., and Rueff, J. Absence of stimulation of poly(ADP-ribose) polymerase activity in patients predisposed to colon cancer, Br. J. Cancer. 77:1628–1632, 1998.

    Article  PubMed  CAS  Google Scholar 

  58. Ellis, N.A., Groden, J., Ye, T.-Z., Straughen, J., Lennon, D.J., Ciocci, S., Proytcheva, M., and German, J. The Bloom’s syndrome gene product is homologous to RecQ helicases, Cell. 83: 655–666, 1995.

    CAS  Google Scholar 

  59. Buchwald, M. and Moustacchi, E. Is Fanconi anemia caused by a defect in the processing of DNA damage?, Mutation Res. 408: 75–90, 1998.

    Article  PubMed  CAS  Google Scholar 

  60. Gottleib, T.M. and Oren, M. p53 in growth control and neoplasia, Biochim. Biophys. Acta. 1996: 77–102, 1996.

    Google Scholar 

  61. Wang, X.W. and Harris, C.C. TP53 tumour suppressor gene: clues to molecular carcinogenesis and cancer therapy, Cancer Surveys. 28: 169–196, 1996.

    PubMed  CAS  Google Scholar 

  62. Abrahams, P.J., Houweling, A., Cornelissen-Steijger, P.D.M., Jaspers, N.G.J., Darroudi, E, Meijers, GM., Mullenders, L.H.E, Filon, R., Arwert, E, Pinedo, H.M., Natarajan, A.P.T., Terleth, C., Van Zeeland, A.A., and van der Eb, A.J. Impaired DNA repair capacity in skin fibroblasts from various hereditary cancer-prone syndromes, Mutation Res. 407:189–201, 1998.

    Google Scholar 

  63. Wei, Q. and Spitz, M.R. The role of DNA repair capacity in susceptibility to lung cancer: a review, Cancer and Metastasis Reviews. 16: 295–307, 1997.

    Article  PubMed  CAS  Google Scholar 

  64. Cheng, L., Eicher, S.A., Guo, Z., Hong, W.K., Spitz, M.R., and Wei, Q. Reduced DNA repair capacity in head and neck cancer patients, Cancer Epidemiology, Biomarkers and Prevention. 7: 465–468, 1998.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pegg, A.E. (1999). DNA Repair Pathways and Cancer Prevention. In: Zappia, V., Della Ragione, F., Barbarisi, A., Russo, G.L., Iacovo, R.D. (eds) Advances in Nutrition and Cancer 2. Advances in Experimental Medicine and Biology, vol 472. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3230-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3230-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3331-7

  • Online ISBN: 978-1-4757-3230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics