Skip to main content

Food Enzymes and Future Development

  • Chapter
Food Enzymes

Abstract

Enzymes have been utilized for food processing since ancient times. The use of calf rennet in cheese making has been in practice long before the development of enzymology as a science. Fermentation in wine making, likewise, is an age-old practice that utilizes enzymes occurring naturally in raw materials. Proteolytic enzymes in the form of malt extract, koji, and papaya extract have been used for centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder-Nissen, J. 1987. Newer uses of microbial enzymes in food processing. TIBTECH 5, 170–174.

    Article  Google Scholar 

  • Benkovic, S. J.; Napper, A. D.; and Lerner, R. A. 1988. Catalysis of a stereospecific bimolecular amide synthesis by an antibody. Proc. Natl. Acad. Sci. USA 85, 5355–5358.

    Article  CAS  Google Scholar 

  • Bentley, G. A.; Boulot, G.; Riottot, M. M.; and Poljak, R. J. 1990. Three-dimensional structure of an idiotope-anti-idiotope complex. Nature 348, 254–257.

    Article  CAS  Google Scholar 

  • Breslow, R.; Canary, J. W.; Varney, M.; Waddell, S. T.; and Yang, D. 1990. Artificial transaminases linking pyridoxamine to binding cavities: Controlling the geometry. J. Am. Chem. Soc. 112,5212–5219.

    Article  CAS  Google Scholar 

  • Breslow, R., and Czarnik, A. W. 1983. Transminations by pyridoxamine selectively attached at C-3 in [3-cyclodextrin. J. Am. Chem. Soc. 105,1390–1391.

    Article  CAS  Google Scholar 

  • Breslow, R.; Doherty, J. B.; Guillot, G.; and Lipsey, C. 1978. β-Cyclodextrinyl-bisimidazole, a model for ribonucleases. J. Am. Chem. Soc. 100,3229.

    Article  Google Scholar 

  • Breslow, R.; Hammond, M.; and Lauer, M. 1980. Selective transamination and optical induction by a β-cyclodextrin-pyridoxamine artificial enzyme. J. Am. Chem. Soc. 102, 421–422.

    Article  CAS  Google Scholar 

  • Breslow, R., and Zhang, B. 1992. Very fast ester hydrolysis by a cyclodextrin dimmer with a catalytic linking group. J. Am. Chem. Soc. 114, 5882–5883.

    Article  CAS  Google Scholar 

  • Clackson, T., and Wells, J. A. 1994. In vitro selection from protein and peptide libraries. TIBTECH 12, 173–184.

    Google Scholar 

  • Corey, M. J.; Hallukova, E.; Pugh, K.; and Stewart, J. M. 1994. Studies on chymotrypsin-like catalysis by synthetic peptides. Appl. Biochem. Biophys. 47, 199–212.

    CAS  Google Scholar 

  • Degrado, W. F.; Wasserman, Z. R.; and Lear, J. D. 1989. Protein design, a minimalist approach. Science 243, 622–628.

    Article  CAS  Google Scholar 

  • Dornenburg, H., and Lang-Hinrichs, C. 1994. Genetic engineering in food biotechnology. Chem. & Industry 13,506–510.

    Google Scholar 

  • D’Souza, V. T., and Bender, M. L. 1987. Miniature organic models of enzymes. Acc. Chem. Res. 20,146–152.

    Article  Google Scholar 

  • D’Souza, V. T.; Hanabusa, K.; O’leary, T.; Gadwood, R. C.; and Bender, M. L. 1985. Synthesis and evaluation of a miniature organic model of chymotrypsin. Biochem. Biophys. Res. Comm. 129, 727–732.

    Article  Google Scholar 

  • D’Souza, V. T.; Lu, X. L.; Ginger, R. D.; and Bender, M. L. 1987. Thermal and pH stability of “ 3-benzyme.” Proc. Natl. Acad. Sci. USA. 84,673–674.

    Article  Google Scholar 

  • Dziezak, J. D. 1986. Enzyme modification of dairy products. Food Technol. 40, 114–120.

    Google Scholar 

  • Dugas, H. 1989. Bioorganic Chemistry. A Chemical Approach to Enzyme Action. 2nd ed., Springer-Verlag, New York.

    Google Scholar 

  • Ellman, J.; Mendel, D.; Anthony-Cahill, S.; Noren, C. J.; and Schultz, P. G. 1991. Biosynthetic method for introducing unnatural amino acids site-specifically into proteins. Methods Enzymol. 202, 301–337.

    Article  CAS  Google Scholar 

  • Erickson, D. 1992. Hot potato. Scientific American 267(3), 160–161.

    Article  Google Scholar 

  • Evans, S. V.; Rose, D. R.; To, R.; Young, N. M.; and Bundle, D. R. 1994. Exploring the mimicry of polysaccharide antigens by anti-idiotypic antibodies. J. Mol. Biol. 241, 691–705.

    Article  CAS  Google Scholar 

  • Friboulet, A.; Izadyar, L.; Avalle, B.; Roseto, A.; and Thomas, D. 1994. Abzyme generation using an anti-idiotypic antibody as the internal image of an enzyme active site. Appl. Biochem. Biophys. 47, 229–239.

    CAS  Google Scholar 

  • Gallacher, G.; Searcey, M.; Jackson, C. S.; and Brocklehurst, K. 1992. Polyclonal antibody-catalyzed amide hydrolysis. Biochem. J. 284, 675–780.

    CAS  Google Scholar 

  • Grove, A.; Mutter, M.; Rivier, J. E.; and Montal, M. 1993. Template-assembled synthetic proteins designed to adopt a globular, four-helix bundles conformation from ionic channels in lipid bilayer. J. Am. Chem. Soc. 115, 5915–5924.

    Article  Google Scholar 

  • Guo, J.; Huang, W.; and Scanlan, T. S. 1994. Kinetic and mechanistic characterization of an efficient hydrolytic activity: Evidence for the formation of an acyl intermediate. J. Am. Chem. Soc. 116, 6062–6069.

    Article  CAS  Google Scholar 

  • Hahn, K. W.; Klis, W. A.; and Stewart, J. M. 1990. Design and synthesis of a peptide having chymotrypsin-like esterase activity. Science 248, 1544–1547.

    Article  CAS  Google Scholar 

  • Haynes, M. R.; Stura, E. A.; Hilvert, D.; and Wilson, I. A. 1994. Routes to catalysis: Structure of a catalytic antibody and comparison with its natural counterpart. Science 263, 646–652.

    Article  CAS  Google Scholar 

  • Hilvert, D.; Hill, K. W.; Nared, K. D.; and Auditor, M.-T. M. 1989. Antibody catalysis of a Diels-Alder reaction. J. Am. Chem. Soc. 111, 9261–9262.

    Article  CAS  Google Scholar 

  • Iverson, B. L., and Lerner, R. A. 1989. Sequence-specific peptide cleavage catalyzed by an antibody. Science 243, 1184–1188.

    Article  CAS  Google Scholar 

  • Jackson, D. Y.; Jacobs, J. W.; Sugasawara, R.; Reich, S. H.; Barlett, P. A.; and Schultz, P. G. 1988. An antibody-catalyzed Claisen rearrangement. J. Am. Chem. Soc. 110, 4841–4842.

    Article  CAS  Google Scholar 

  • Janda, K. D. 1994. Tagged versus untagged libraries: Methods for the generation and screening of combinatorial chemical libraries. Proc. Natl. Acad. Sci. USA 91, 10779–10785.

    Article  CAS  Google Scholar 

  • Janda, K. D.; Benkovic, S. J.; and Lerner, R. A. 1989. Catalytic antibodies with lipase activity and R or S substrate selectivity. Science 244, 437–440.

    Article  CAS  Google Scholar 

  • Janda, K. D.; Lo, C.-H. L.; Li, T.; Farbas, C. F. III; Virsching, P.; and Lerner, R. A. 1994. Direct selection for a catalytic mechanism from combinatorial antibody libraries. Proc. Natl. Acad. Sci. USA 91, 2532–2536.

    Article  CAS  Google Scholar 

  • Janda, K. D.; Schloeder, D.; Benkovic, J.; and Lerner, R. A. 1988. Induction of an antibody that catalyzes the hydrolysis of an amide bond. Science 241, 1188–1191.

    Article  CAS  Google Scholar 

  • Janda, K. D.; Shevlin, C. G.; and Lerner, R. A. 1993. Antibody catalysis of a disfavored chemical transformation. Science 259, 490–493.

    Article  CAS  Google Scholar 

  • Kuroda, Y.; Hiroshige, T.; and Ogoshi, H. 1990. Epoxidation reaction catalyzed by cyclodextrin sandwiched porphyrin in aqueous buffer solution. J. Chem. Soc. Chem. Comm. 1990, 1594–1595.

    Article  Google Scholar 

  • Lelen, K. 1992. Ag-biotechnology companies move forward on heels of the FDA statement on biofoods. Genetic Engineering News 12(11), 21–22.

    Google Scholar 

  • Mccafferty, J.; Griffiths, A. D.; Winter, G.; and Chiswell, D. J. 1990. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  CAS  Google Scholar 

  • Napper, A. D.; Benkovic, S. J.; Tramontano, A.; and Lerner, R. A. 1987. A stereospecific cyclization catalyzed by an antibody. Science 237, 1041–1043.

    Article  CAS  Google Scholar 

  • O’Neil, K. T.; Hoess, R. H.; and Degrado, W. F. 1990. Design of DNA-binding peptides based on the leucine zipper motif. Science 249, 774–778.

    Article  Google Scholar 

  • Pickersgill, R. W., and Goodenough, P. W. 1991. Enzyme Engineering. Trends in Food Sci. & Technol. 9, 122–126.

    Article  Google Scholar 

  • Pollack, S. J.; Jacobs, J. W.; and Schultz, P. G. 1986. Selective chemical analysis by an antibody. Science 234, 1570–1573.

    Article  CAS  Google Scholar 

  • Pollack, S. J.; Nakayama, G. R.; and Schultz, P. G. 1988. Introduction of nudeophiles and spectroscopic probes into antibody combining sites. Science 242, 1038–1040.

    Article  CAS  Google Scholar 

  • Pollack, S. J., and Schultz, P. G. 1989. A semisynthetic catalytic antibody. J. Am. Chem. Soc. 111,1929–1931.

    Article  CAS  Google Scholar 

  • Rao, K. R.; Srinivasan, T. N.; Bhanumathi, N.; and Sattur, P. B. 1990. Artificial enzymes: Synthesis of imidazole substituted at C(2) of β-cyclodextrin as an efficient enzyme model of chymotrypsin. J. Chem. Soc. Chem. Comm. 1990,1011.

    Google Scholar 

  • Robertson, D. E.; Farid, R. S.; Moser, C. C.; Urbauer, J. L.; Mulholland, S. E.; Pidikiti, R.; Lear, J. D.; Wand, A. J.; Degrado, W. F.; and Dutton, P. L. 1994. Design and synthesis of multi-haem proteins. Nature 368,425–432.

    Article  CAS  Google Scholar 

  • Sasaki, T., and Kaiser, E. T. 1989. Helichrome: Synthesis and enzymatic activity of a designed hemeproteins. J. Am. Chem. Soc. 111, 380–381.

    Article  CAS  Google Scholar 

  • Shokat, K. M.; Leumann, C. J.; Sugasawara, R.; and Schultz, P. G. 1989. A new strategy for the generation of catalytic antibodies. Nature 338, 269–271.

    Article  CAS  Google Scholar 

  • Skillicorn, A. 1994. Oilseeds get a genetic makeover. Food Processing 55(2), 48–52.

    Google Scholar 

  • Spradlin, J. E. 1989. Tailoring enzyme systems for food processing. In: Biocatalysis in Agricultural Biotechnology, J. R. Whitaker, and P. E. Sonnet, eds., American Chemical Society Sym. Ser. 389, Washington, DC.

    Google Scholar 

  • Tabushi, I., and Kuroda, Y. 1984. Bis(histamino)cyclodextrin-Zu-imidazolecomplex as an artificial carbonic anhydrase. J. Am. Chem. Soc. 106,4580–4584.

    Article  CAS  Google Scholar 

  • Taub, R., and Greene, M. I. 1992. Functional validation of ligand mimicry by anti-receptor antibodies: Structural and therapeutic implications. Biochemistry 31, 7432–7435.

    Article  Google Scholar 

  • Tramontano, A.; Janka, K. D.; and Lerner, R. A. 1986. Catalytic antibodies. Science 234, 1566–1570.

    Article  CAS  Google Scholar 

  • Winter, G., and Milstein, C. 1991. Man-made antibodies. Nature, 349,293–299.

    Article  CAS  Google Scholar 

  • Wirsching, P.; Ashley, J. A.; Benkovic, S. J.; Janda, K. D.; and Lerner, R. A. 1991. An unexpected efficient catalytic antibody operating by ping-pong and induced fit mechanisms. Science 252, 680–685.

    Article  CAS  Google Scholar 

  • Zaks, A.; Empie, M.; and Gross, A. 1988. Potentially commercial enzymatic processes for the fine and specialty chemical industries. TIBTECH 6, 272–275.

    Article  Google Scholar 

  • Zhou, G. W.; Guo, J.; Huang, W.; Fletterick, R. J.; and Scanlan, T. S. 1994. Crystal structure of a catalytic antibody with serine protease active site. Science 265, 1059–1064.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wong, D.W.S. (1995). Food Enzymes and Future Development. In: Food Enzymes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2349-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2349-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4722-2

  • Online ISBN: 978-1-4757-2349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics