Skip to main content

A Review of Measurements of Respiration Rates of Marine Plankton Populations

  • Chapter
Heterotrophic Activity in the Sea

Part of the book series: NATO Conference Series ((MARS,volume 15))

Abstract

The biological cycle in the oceans may be viewed to be comprised of two fundamental processes: photosynthesis and respiration. The introduction by Steemann Nielsen of the 14C-technique for measuring planktonic photosynthesis has enabled this particular process to be extensively and easily studied. As a consequence there is now a considerable body of data available of measurements of plankton photosynthesis. This contrasts with respiration for which there are still remarkably few direct measurements. Although the processes of respiration and photosynthesis may be regarded to be in balance and essentially equal on the oceanic scale, food chain processes cause them to be separated both in space and time. In contrast to photosynthesis, planktonic respiration may be expected to occur throughout the water column. Thus in any one situation, respiration cannot be taken to be simply equal to photosynthesis but needs to be measured independently. Furthermore respiration is not restricted to a single group of organisms but common to all. Thus the study of respiration is inherently more complex and extensive than photosynthesis from both the trophodynamic and geographical points of view. The distribution of respiration between the major planktonic groups (net zooplankton, microzooplankton, heterotrophic microorganisms, algae) will give insight into the trophic structure of the planktonic community. The vertical distribution of respiration in the water column can given accounts of the export to and fate of the products of phytoplankton photosynthesis in the deeper parts of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andrews, P., and P. J. leB. Williams. 1971. Heterotrophic utilization of organic compounds in the sea. III. Measurement of the oxidation rates and concentrations of glucose and amino acids in sea water. J. Mar. Biol. Assoc. UK 51: 111–125.

    Article  Google Scholar 

  • Antia, N. J., C. D. McAllister, T. R. Parson, K. Stephens, and J. D. H. Strickland. 1963. Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr. 8: 166–183.

    Article  Google Scholar 

  • Ben-Yaakov, S. 1972. On the CO2-O2 system in the northeastern Pacific. Mar. Chem. 1: 3–26.

    Article  Google Scholar 

  • Beyers, R. J., and H. T. Odum. 1959. The use of carbon dioxide to construct pH curves for the measurement of productivity. Limnol. Oceanogr. 4: 499–502.

    Article  Google Scholar 

  • Billen, G., C. Joiris, J. Winant, and G. Gillain. 1980. Concentration and metabolism of small organic molecules in estuarine, coastal and open sea environments of the Southern North Sea. Estuarine Coastal Mar. Sei. 11: 279–294.

    Article  Google Scholar 

  • Bolin, B., and E. Eriksson. 1959. Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion, pp. 130–146. In B. Bolin [ed.], Rossby Memorial Volume. Rockefeller Press, New York.

    Google Scholar 

  • Bryan, J. R., J. P. Riley, and P. J. leB. Williams. 1976. A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol. 21: 191–197.

    Article  Google Scholar 

  • Carritt, D. E., and J. H. Carpenter. 1966. Comparison and evaluation of currently employed modifications of the Winkler method for determining dissolved oxygen in seawater: a NASCO report. J. Mar. Res. 24: 286–318.

    Google Scholar 

  • Christensen, J. P., and T. T. Packard. 1979. Respiratory electron transport activities in phytoplankton and bacteria: Comparison of methods. Limnol. Oceanogr. 24: 576–583.

    Article  Google Scholar 

  • Codispotti, L. A., G. E. Friederich, R. L. Iverson, and D. W. Wood. 1982. Temporal changes in the inorganic carbon system of the southeast Bering Sea during spring 1980. Nature 296: 242–245.

    Article  ADS  Google Scholar 

  • Cooper, L. H. N. 1933. Chemical constituents of biological importance in the English Channel, November 1930 to January 1932. Part II. Hydrogen ion concentration, excess base, carbon dioxide and oxygen. J. Mar. Biol. Assoc. UK 18: 729–751.

    Google Scholar 

  • Crawford, C. C., J. E. Robbie and K. L. Webb. 1974. The utilization of dissolved free amino acids by estuarine microorganisms. Ecology 55: 551–563.

    Article  Google Scholar 

  • Davies, J. M., and P. J. leB. Williams. 1984. Verification of 14C and O2 derived primary organic production measurements using an enclosed ecosystem. J. Plank. Res. In press.

    Google Scholar 

  • Dawson, R., and K. Gocke. 1978. Heterotrophic activity in comparison to the free amino acid concentration in Baltic sea water samples. Oceanol. Acta 1: 45–54.

    Google Scholar 

  • Derenbach, J. B., and P. J. leB. Williams. 1974. Autotrophic and bacterial production: fractionation of plankton populations by differential filtration of samples from the English Channel. Mar. Biol. 25: 263–269.

    Article  Google Scholar 

  • Eppley, R. W. 1980. Estimating phytoplankton growth rates in the central oligotrophic oceans, pp. 231–242. In P. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.

    Google Scholar 

  • Eppley, R. W., and J. H. Sharp. 1975. Photosynthetic measurements in the Central North Pacific. The dark loss of carbon in 24-hr incubations. Limnol. Oceanogr. 20: 981–987.

    Google Scholar 

  • Eppley, R. W., E. H. Renger, E. L. Venrick, and M. M. Mullin. 1973. A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean. Limnol. Oceanogr. 18: 534–551.

    Article  Google Scholar 

  • Fuhrman, J. A., and F. Azam. 1980. Bacterial secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.

    Google Scholar 

  • Gaarder, T., and H. H. Gran. 1927. Investigation of the production of plankton in the Oslo Fjord. Rapp. P.V. Cons. Int. Explor. Mer 42: 1–48.

    Google Scholar 

  • Gamble, J. C., J. M. Davies, and J. H. Steele. 1977. Loch Ewe bag experiment 1974. Bull. Mar. Sei. 27: 146–175.

    Google Scholar 

  • Gieskes, W. W. C., G. W. Kraay, and M. A. Baars. 1979. Current 14C methods for measuring primary productivity: gross underestimates in oceanic waters. Neth. J. Sea Res. 13: 58–78.

    Article  Google Scholar 

  • Gocke, K. 1976. Respiration von gelösten organischen Verbindungen durch naturliche Mikroorganismen-Populationen. Ein Vergleich zwischen verschiedenen Biotopen. Mar. Biol. 35: 375–383.

    Google Scholar 

  • Harrison, W. G. 1980. Nutrient regeneration and primary production in the sea, pp. 433–460. In: P. Falkowski [ed.]. Primary Productivity in the Sea. Plenum Press, New York.

    Google Scholar 

  • Robbie, J. E., and C. C. Crawford. 1969. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14: 528–532.

    Article  Google Scholar 

  • Robbie, J. E., O. Holm-Hansen, T. T. Packard, L. R. Pomeroy, R. W. Sheldon, J. P. Thomas, and W. J. Wiebe. 1972. A study of the distribution and activity of microorganisms in ocean water. Limnol. Oceanogr, 17: 544–555.

    Article  Google Scholar 

  • Holm-Ransen, O., T. T. Packard, and L. R. Pomeroy. 1970. Efficiency of the reverse-flow filter technique for the concentration of particulate matter. Limnol. Oceanogr. 15: 832–835.

    Article  Google Scholar 

  • Itturiaga, R., and G.-G. Hoppe. 1977. Observations of heterotrophic activity in photoassimilated organic matter. Mar. Biol. 40: 101–108.

    Article  Google Scholar 

  • Ivanenkov, V. N., V. V. Sapozhnikov, A. M. Chernyackova, and A. N. Jusarova. 1972. Rate of chemical processes in the photosynthetic layer of the tropical Atlantic. Oceanology 12: 207–214.

    Google Scholar 

  • Johnson, K. M., C. M. Burney, and J. McN. Sieburth. 1981. Enigmatic marine ecosystem metabolism measured by direct diel CO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65: 49–60.

    Article  Google Scholar 

  • Johnson, K. S., R. M. Pytkowicz, and C. S. Wong. 1979. Biological production and the exchange of oxygen and carbon dioxide across the sea surface in Stuart Channel, British Columbia. Limnol. Oceanogr. 24: 474–482.

    Article  Google Scholar 

  • Kadota, H., Y. Rata, and H. Miyoshii. 1966. A new method for estimating the mineralization activity of lake water and sediment. Mem. Res. Inst. Food Sei. Kyoto Univ. 27: 28–30.

    Google Scholar 

  • King, F. D., A. H. Devol, and T. T. Packard. 1978. Plankton metabolic activity in the eastern tropical North Pacific. Deep-Sea Res. 25: 689–704.

    Article  Google Scholar 

  • Kuntz, D., T. T. Packard, A. Devol, and J. Anderson. 1975. Chemical, physical and biological observations in the vicinity of the Costa Rica Dome (January-February 1973). Tech. Ref. No. 321, Dept. of Oceanography, Univ. of Washington. 187 pp.

    Google Scholar 

  • Kuo, H. H., and G. Veronis. 1970. Distribution of tracers in the deep oceans of the world. Deep-Sea Res. 17: 29–46.

    Google Scholar 

  • Lancelot, C. 1979. Gross excretion rates of natural marine phytoplankton and heterotrophic uptake of excreted products in the Southern North Sea, as determined by short-term kinetics. Mar. Ecol. Prog. Ser. 1: 179–186.

    Article  Google Scholar 

  • Larsson, U., and Ä. Hagström. 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.

    Article  Google Scholar 

  • Menzel, D. W., and J. H. Ryther. 1960. The annual cycle of primary production in the Sargasso Sea off Bermuda. Deep-Sea Res. 6: 351–367.

    Google Scholar 

  • Münk, W. H. 1966. Abyssal recipes. Deep-Sea Res. 13: 707–730.

    Google Scholar 

  • Newell, R. C., M. I. Lucas, and E. A. S. Linley. 1981. Rate of degradation and efficiency of conversion of phytoplankton debris by marine microorganisms. Mar. Ecol. Prog. Ser. 6: 123–136.

    Article  Google Scholar 

  • Odum, H. T., and C. M. Hoskin. 1958. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sei. Univ. Tex. 5: 16–46.

    Google Scholar 

  • Packard, T. T. 1971. The measurement of respiratory electron transport activity in marine phytoplankton. J. Mar. Res. 29: 235–244.

    Google Scholar 

  • Packard, T. T. 1979. Respiration and respiratory electron transport activity in plankton from the Northwest African upwelling area. J. Mar. Res. 37: 711–742.

    Google Scholar 

  • Packard, T. T., A. H. Devol, and F. D. King. 1975. The effect of temperature on the respiratory electron transport system in marine plankton. Deep-Sea Res. 22: 237–249.

    Google Scholar 

  • Packard, T. T., D. Harman, and J. Boucher. 1974. Respiratory electron transport activity in plankton from upwelled waters. Tethys 6: 213–222.

    Google Scholar 

  • Packard, T. T., M. L. Healy, and F. A. Richards. 1971. Vertical distribution of the activity of the respiratory electron transport system in marine plankton. Limnol, Oceanogr. 16: 60–70.

    Article  Google Scholar 

  • Packard, T. T., T. Moore, D. Harmon, A. Devol, and F. D. King. 1973. Respiratory electron transport activity in the euphotic zone plankton of the western Mediterranean Sea, North Atlantic Ocean, and the North Pacific Ocean, pp. 201–207. In: J. J. Maclsaac [ed.]. Report of the working conference on a systems approach to eutrophication problems in the eastern Mediterranean. Special Report No. 53 of the Dept. of Oceanography, Univ. of Washington, Seattle. 270 pp.

    Google Scholar 

  • Packard, T. T., and P. J. leB. Williams. 1981. Respiration and respiratory electron transport activity in sea surface seawater from the northeast Atlantic. Oceanol. Acta. 4: 351–358

    Google Scholar 

  • Park, K., D. W. Hood, and H. T. Odum. 1958. Diurnal pH variation in Texas bays, and its application to primary production estimation. Publ. Inst. Mar. Sei. Univ. Tex. 5: 47–64.

    Google Scholar 

  • Parsons, T. R., L. J. Albright, F. Whitney, C. S. Wong, and P. J. leB. Williams. 1981. The effect of glucose on the productivity of sea water: an experimental approach using controlled aquatic ecosystems. Mar. Env. Res. 4: 229–242.

    Article  Google Scholar 

  • Parsons, T. R., and J. D. H. Strickland. 1961. On the production of particulate organic carbon by heterotrophic processes in sea water. Deep-Sea Res. 8: 211–222.

    Article  Google Scholar 

  • Pomeroy, L. R., and R. E. Johannes. 1966. Total plankton respiration. Deep-Sea Res. 13: 971–973.

    Google Scholar 

  • Pomeroy, L. R., and R. E. Johannes. 1968. Occurrence and respiration of ultraplankton in the upper 500 metres of the ocean. Deep-Sea Res. 15: 381–391.

    Google Scholar 

  • Riley, G. A. 1939. Plankton studies III. The Western North Atlantic, May-June 1939. J. Mar. Res. 2: 145–162 .

    Google Scholar 

  • Riley, G. A. 1941. Plankton studies IV Georges Bank. Bull. Bingham Oceanogr. Collect. 7: 1–74.

    Google Scholar 

  • Riley, G. A. 1951. Oxygen, phosphate, and nitrate in the Atlantic Ocean. Bull. Bingham Oceanogr. Collect. 13: 1–126.

    Google Scholar 

  • Ryther, J. H. 1959. Potential productivity of the sea. Science 130: 602–608.

    Article  ADS  Google Scholar 

  • Schmalz, R. F., and F. J. Swanson. 1969. Diurnal variations in the carbonate saturation of seawater. J. Sediment. Petrol. 39: 255–267.

    Google Scholar 

  • Setchell, F. W., and T. T. Packard. 1979. Phytoplankton respiration in the Peru upwelling. J. Plankton Res. 1: 343–354.

    Article  Google Scholar 

  • Sharp, J. H., M. J. Perry, E. H. Renger, and R. W. Eppley. 1980. Phytoplankton rate processes in the oligotrophic waters of the central North Pacific Ocean. J. Plankton Res. 2: 335–353.

    Article  Google Scholar 

  • Sheldon, R. W., and W. H. Sutcliffe. 1978. Generation times of 3 h for Sargasso Sea microplankton as determined by ATP analysis. Limnol. Oceanogr. 23: 1051–1055.

    Article  Google Scholar 

  • Shulenberger, E., and J. L. Reid. 1981. The Pacific shallow oxygen maximum deep chlorophyll maximum, and primary production, reconsidered. Deep-Sea Res. 28: 901–919.

    Article  Google Scholar 

  • Sieburth, J. McN. 1977. International Helgoland Symposium: Convenor’s report on the informal session on biomass and productivity of microorganisms in planktonic ecosystems. Helgol. Wiss. Meeresunters. 30: 697–704.

    Article  Google Scholar 

  • Slawyk, G., H. J. Minas, and T. T. Packard. 1976. A further Investigation on the primary productivity in the divergent zone near the French Mediterranean Coast. Int. Revue ges. Hydrobiol. 61: 373–381.

    Article  Google Scholar 

  • Smith, S. V. 1973. Carbon dioxide dynamics: a record of organic carbon production, respiration, and calcification in the Eniwetok reef flat community. Limnol. Oceanogr. 18: 106–120.

    Article  Google Scholar 

  • Smith, S. v., and J. A. Marsh. 1973. Organic carbon production on the windward reef flat of Eniwetok Atoll. Limnol. Oceanogr. 18: 953–961.

    Article  Google Scholar 

  • Smith, W. O. 1977. The respiration of photosynthetic carbon in eutrophic areas of the ocean. J. Mar. Res. 35: 557–565.

    ADS  Google Scholar 

  • Smith, W. O., R. T. Barber, and S. A. Huntsman. 1977. Primary production off the coast of Northwest Africa: excretion of dissolved organic matter and its heterotrophic uptake. Deep-Sea Res. 24: 35–47.

    Article  Google Scholar 

  • de Souza Lima, H., and P. J. leB. Williams. 1978. Oxygen consumption by the planktonic population of an estuary. Estuarine Coastal Mar. Sei. 6: 515–521.

    Article  Google Scholar 

  • Steele, J. H., D. W. Farmer, and E. W. Henderson. 1977. Temperature structure in large marine enclosures. J. Fish. Res. Board Canada 34: 1095–1104.

    Article  Google Scholar 

  • Steemann Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Explor. Mer 18: 117–140.

    Google Scholar 

  • Steemann Nielsen, E. 1955. The interaction of photosynthesis and respiration and its importance for the determination of 14C- discrimination in photosynthesis. Physiol. Plant. 8: 945–953.

    Article  Google Scholar 

  • Tailing, J. F. 1973. The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshw. Biol. 3: 335–362.

    Article  Google Scholar 

  • Teal, J. M., and J. Kanwisher. 1966. The use of pCO2 for the calculation of biological production, with examples from waters off Massachusetts. J. Mar. Res. 24: 4–14.

    Google Scholar 

  • Tijssen, S. B. 1979. Diurnal oxygen rhythm and primary production in the mixed layer of the Atlantic Ocean at 20°N. Neth. J. Sea Res. 13: 79–84.

    Article  Google Scholar 

  • Tijssen, S. B., and B. Eijgenraam. 1980. Diurnal oxygen rhythm in the Southern Bight of the North Sea: net and gross production in April 1980 in a Phaeocystis bloom. ICES C.M. 1980/C:17.

    Google Scholar 

  • Vinogradov, M. E., V. V. Menshutkin, and E. A. Shushkina. 1972. On a mathematical simulation of a pelagic ecosystem in tropical waters of the ocean. Mar. Biol. 16: 261–268.

    Article  Google Scholar 

  • Vinogradov, M. Y., V. F. Krapivin, V. V. Menshutkin, B. S. Fleyshman, and E. A. Shushkina. 1973. Mathematical model of the functions of the pelagic ecosystem in tropical regions (from 50th voyage of the R/V Vityaz). Oceanology 13: 704–717.

    Google Scholar 

  • Weichart, G. 1980. Chemical changes and primary productionin the Fladen Ground area (North Sea) during the first phase of the spring phytoplankton bloom. “Meteor” Forsch.-Ergebnisse 22: 79–86.

    Google Scholar 

  • Wiebe, W. J., and D. F. Smith. 1977. Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs. Mar. Biol. 42: 213–223.

    Article  Google Scholar 

  • Williams, P. J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of population and relationship between respiration and incorporation of growth substances. J. Mar. Biol. Assoc. UK 50: 859–870.

    Article  Google Scholar 

  • Williams, P. J. leB. 1973. On the question of growth yields of natural heterotrophic populations, pp. 399–400. In: T. Rosswall [ed.]. Modern Methods in the Study of Microbial Ecology. Bull. Ecol. Res. Comm. (Stockholm) 1973. Swedish Natural Science Research Council.

    Google Scholar 

  • Williams, P. J. leB. 1981a. Microbial contribution to overall marine plankton metabolism: direct measurements of respiration. Oceanol. Acta 4: 359–364.

    Google Scholar 

  • Williams, P. J. leB. 1981b. Incorporation of microbeterotrophic processes into the classical paradigm of the planktonic food web. 15th European Symposium on Marine Biology, Kiel, F.G.R. Kiel. Meei;esforsch. 5: 1–28.

    Google Scholar 

  • Williams, P. J. leB. 1981c. Microbial contribution to overall plankton community respiration - studies in CEE’s, pp. 305–321. In; G. D. Grice and H. R. Reeve [eds.]. Marine Mesocosms: Biological and Chemical Research in Experimental Ecosystems. Springer-Verlag, Berlin.

    Google Scholar 

  • Williams, P. J. leB. Bacterial production in the marine food chain: the emperor’s new suit of clothes. In: M. J. Fasham [ed.]. Flow of Energy and Material in Marine Ecosystems: Theory and Practice. Plenum, New York. In press.

    Google Scholar 

  • Williams, P. J. leB., and C. Askew. 1968. A method of measuring the mineralization by microorganisms of organic compounds in sea water. Deep-Sea Res. 15: 365–375.

    Google Scholar 

  • Williams, P. J. leB., T. Berman, and O. Holm-Hansen. 1976. Amino acid uptake and respiration by marine heterotrophs. Mar. Biol. 35: 41–47.

    Article  Google Scholar 

  • Williams, P. J. leB., K. R. Heinemann, J. Marra, and D. A. Purdie. 1983. Comparison of 14C and O2 measurements of phytoplankton production in oligotrophic waters. Nature (London) 305:49–50.

    Article  ADS  Google Scholar 

  • Williams, P. J. leB., and N. W. Jenkinson. 1982. A transportable microprocessor-controlled precise Winkler titration suitable for field station and shipboard use. Limnol. Oceanogr. 27: 576–584.

    Article  Google Scholar 

  • Williams, P. J. leB., and C. S. Yentsch. 1976. An examination of photosynthetic production, excretion of photosynthetic products, and heterotrophic utilization of dissolved organic compounds with reference to results from a coastal subtropical sea. Mar. Biol. 35: 31–40.

    Article  Google Scholar 

  • Wong, C. S., R. D. Bellegay, and A. B. Cornford. 1975. Measurable inorganic carbon parameters in seawater, pp. 47–57. Spec. Tech. Publ. No. 573. Am. Soc. Testing and Materials, Philadelphia.

    Google Scholar 

  • Wyrtki, K. 1962. The oxygen minimum in relation to oceanic circulation. Deep-Sea Res. 9: 11–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Williams, P.J.l. (1984). A Review of Measurements of Respiration Rates of Marine Plankton Populations. In: Hobbie, J.E., Williams, P.J.l. (eds) Heterotrophic Activity in the Sea. NATO Conference Series, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9010-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9010-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9012-1

  • Online ISBN: 978-1-4684-9010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics