Skip to main content

Focal and Generalized Epileptiform Activity in the Cortex: In Search of Differences in Synaptic Mechanisms, Ionic Movements, and Long-Lasting Changes in Neuronal Excitability

  • Chapter
Generalized Epilepsy

Abstract

The aim of this chapter is to compare the cellular and the ionic mechanisms that characterize the focal and generalized epileptiform discharges recorded in the cortex. In this review of experimental findings obtained in both in vivo and in vitro brain preparations, we have set as our goal understanding the differences that might exist at the cellular level in these epileptic patterns in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajmone-Marsan, C., 1969, Acute effects of topical epileptogenic agents, in: Basic Mechanisms of the Epilepsies (H.H. Jasper, A.A. Ward, Jr., and A. Pope, eds), Little, Brown, Boston, pp. 299–319.

    Google Scholar 

  • Alger, B.E., and Nicoll, R.A., 1982a, Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied in vitro, J. Physiol. (Lond.) 328: 105–123.

    Google Scholar 

  • Alger, B.E., and Nicoll, R.A., 1982b, Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitro, J. Physiol. (Lond.) 328: 125–141.

    Google Scholar 

  • Andersen, P., Eccles, J.C., and Løying, Y., 1964a, Location of postsynaptic inhibitory synapses on hippocampal pyramids, J. Neurophysiol. 27: 592–607.

    Google Scholar 

  • Andersen, P., Eccles, J.C., and Løyning, Y., 1964b, Pathway of postsynaptic inhibition in the hippocampus, J. Neurophysiol. 27: 608–619.

    Google Scholar 

  • Andersen, P., Dingledine, B., Gjerstad, L., Langmoen, I.A., and Mosfeldt-Laursen, G., 1980, Two different responses of hippocampal pyramidal cells to application of gamma-aminobutyric acid, J. Physiol. (Lond.) 305: 279–296.

    Google Scholar 

  • Avoli, M., 1984, Penicillin-induced hyperexcitabil-ity in the “in vitro” hippocampal slice can be unrelated to impairment of somatic inhibition, Brain Res 370: 154–158.

    Article  Google Scholar 

  • Avoli, M., 1988, GABAergic mechanisms and epileptic discharges, in: Neurotransmitter and Cortical Function: From Molecules to Mind (M. Avoli, T.A. Reader, R.W. Dykes, and P. Gloor, eds.), Plenum, New York, pp. 187–205.

    Chapter  Google Scholar 

  • Avoli, M., and Perreault, P.A., 1987, GABAergic depolarizing potential in the hippocampus disclosed by the convulsant 4-aminopyradine, Brain Res. 400: 191–195.

    Article  Google Scholar 

  • Avoli, M., Siatitsas, I., Kostopoulos, G., and Gloor, P., 1981, Effects of post-ictal depression on experimental spike and wave discharges, Electroen-cephalogr. Clin Neurophysiol. 52: 372–374.

    Article  Google Scholar 

  • Ayala, G.F., Dichter, M., Gumnit, R.J., Matsumoto, H., and Spencer, W.E., 1973, Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysio-logical explanation of brief paroxysms, Brain Res. 52: 1–17.

    Article  Google Scholar 

  • Ben Ari, Y., Krnjevic, K., Reiffenstein, R.J., and Rehinhardt, W., 1981, Inhibitory conductance changes and action of GABA in rat hippocampus, Neuroscience 6: 2445–2463.

    Article  Google Scholar 

  • Berkovic, S.F., Andermann, F., Andermann, E., and Gloor, P., 1987, Concepts of absence epilepsies: Discrete syndromes or biological continuum? Neurology 37: 993–1000.

    Google Scholar 

  • Buckle, P.J., and Haas, H.L., 1982, Enhancement of synaptic transmission by 4-aminopyridine in hippocampal slices of the rat, J. Physiol. (Lond.) 326: 109–122.

    Google Scholar 

  • Collingridge, G.L., and Bliss, T.V.P., 1987, NMDA-receptors—their role in long term potentiation, Trends Neurosci. 10: 263–265.

    Article  Google Scholar 

  • Connor, J.A., Wadman, W.J., Hodeberger, P.E., and Wong, R.K.S., 1988, Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons, Science 240: 649–653.

    Article  Google Scholar 

  • Dalby, M.A., 1969, Epilepsy and 3 per second spike and wave rhythms. A clinical, electroencepha-lographic and prognostic analysis of 346 patients, Acta Neurol. Scand. 45:Suppl. 40: 183.

    Google Scholar 

  • Davenport, J., Schwindt, P.C., and Crill, W.E., 1979, Epileptic doses of penicillin do not reduce a monosynaptic GABA-mediated post-synaptic inhibition in the intact anesthetized cat, Exp. Neurol. 65: 552–572.

    Article  Google Scholar 

  • Dingledine, R., and Gjerstad, L., 1980, Reduced inhibition during epileptiform activity in the in vitro hippocampal slice, J. Physiol. (Lond.) 305: 297–313.

    Google Scholar 

  • Dreifuss, J.D., Kelly, J.S., and Krnjevic, K., 1969, Cortical inhibition and gamma-aminobutyric acid, Exp. Brain Res. 9: 137–154.

    Article  Google Scholar 

  • Fisher, R.S., and Prince, D.A., 1977, Spike-wave rhythms in cat cortex induced by parenteral penicillin. II. Cellular features., Electroencephalogr. Clin. Neurophysiol. 42: 625–639.

    Article  Google Scholar 

  • Galvan, M., Grafe, P., and ten Bruggengate, G., 1982, Convulsant actions of 4-aminopyridine on the guinea pig olfactory cortex slice, Brain Res. 241: 75–86.

    Article  Google Scholar 

  • Giaretta, D., Kostopoulos, G., Gloor, P., and Avoli, M., 1985, Intracortical inhibitory mechanisms are preserved in feline generalized penicillin epilepsy, Neurosci. Lett. 59: 203–208.

    Article  Google Scholar 

  • Giaretta, D., Avoli, M., and Gloor, P., 1987, Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy, Brain Res. 405: 68–79.

    Article  Google Scholar 

  • Gloor, P., 1989, Epilepsy: Relationships between electrophysiology and intracellular mechanisms involving second messengers and gene expression, Can. J. Neurol. Sci. 16: 8–21.

    Google Scholar 

  • Gloor, P., and Fariello, R.G., 1988, Generalized epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy, Trends Neurosci. 11: 63–68.

    Article  Google Scholar 

  • Gloor, P., Hall, G., and Coceani, F., 1966, Differential sensitivity of various brain structures to the epileptogenic action of penicillin, Exp. Neurol. 16: 333–348.

    Article  Google Scholar 

  • Gowers, W.R., 1881, Epilepsy and other chronic convulsive states, Churchill, London.

    Google Scholar 

  • Guberman, A., Gloor, P., and Sherwin, A.L., 1975, Response of generalized penicillin epilepsy in the cat to ethosuximide and diphenylhydantoin, Neurology 25: 758–764.

    Google Scholar 

  • Heinemann, U., Lux, H.D., and Gutnick, M.J., 1977, Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res. 27: 237–243.

    Article  Google Scholar 

  • Hotson, J.R., and Prince, D.A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43: 409–419.

    Google Scholar 

  • Jasper, H.H., and Droogleever-Fortuyn, J., 1946, Experimental studies on the functional anatomy of petit mal epilepsy, Res. Publ. Ass. Res. Nerv. Ment. Dis. 26: 272–298.

    Google Scholar 

  • Johnston, D., and Brown, T.H., 1981, Giant synaptic potential hypothesis for epileptiform activity, Science 211: 294–297.

    Article  Google Scholar 

  • Johnston, D., and Brown, T.H., 1984, Mechanisms of neuronal burst generation, in: Electrophysiology of Epilepsy (P.A. Schwartzkroin and H.V. Wheal, eds.), Academic Press, London, pp. 277–301.

    Google Scholar 

  • Korn, S.J., Giacchino, J.L., Chamberlin, N.L., and Dingledine, R., 1987, Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition, J. Neurophysiol. 57: 325–340.

    Google Scholar 

  • Kostopoulos, G., 1986, Neuronal sensitivity to GABA and glutamate in generalized epilepsy with spike and wave discharges, Exp. Neurol. 92: 20–36.

    Article  Google Scholar 

  • Kostopoulos, G., Avoli, M., and Gloor, P., 1983, Participation of cortical recurrent inhibition in the genesis of the spike and wave discharges in feline generalized penicillin epilepsy, Brain Res. 267: 101–112.

    Article  Google Scholar 

  • Krnjevic, K., 1974, Chemical nature of synaptic transmission invertebrates, Physiol. Rev. 54: 419–450.

    Article  Google Scholar 

  • Krnjevic, K., 1983, GABA mediated inhibitory mechanisms in relation to epileptic discharge, in: Basic Mechanisms of Neuronal Hyper excitability (H.H. Jasper and N.M. van Gelder, eds), Liss, New York, pp. 249–280.

    Google Scholar 

  • Krnjevic, K., and Schwartz, S., 1967, The action of Îł-aminobutyric acid on cortical neurons, Exp. Brain Res. 3: 320–336.

    Article  Google Scholar 

  • Krnjevic, K., Morris, M.E., and Reiffenstein, R.J., 1982, Stimulation evoked changes in extracellular K+ and Ca++ concentrations in pyramidal layer of the rat hippocampus, Can. J. Physiol. Pharmacol. 60: 1643–1657.

    Article  Google Scholar 

  • Lebeda, F.J., Hablitz, J.J., and Johnston, D., 1982, Antagonism of GABA-mediated responses by D-tubocurarine in hippocampal neurons, J. Neuro-physiol. 48: 622–632.

    Google Scholar 

  • Lennox, W.G., and Lennox, M.A., 1960, Epilepsy and Related Disorders, Vol. 1, Little, Brown, Boston.

    Google Scholar 

  • Lux, H.D., Heinemann, U., and Dietzel, I., 1986, Ionic changes and alterations in the size of the extracellular space during epileptic activity, in: Advances in Neurology, Vol. 44 (A.V. Delgado-Escueta, A.A. Ward, Jr., D.M. Woodbury, and R.J. Porter, eds), Raven Press, New York, pp. 619–639.

    Google Scholar 

  • Matsumoto, H., and Ajmone-Marsan, C., 1964a, Cortical cellular phenomena in experimental epilepsy: Interictal manifestations, Exp. Neurol. 9: 286–304.

    Article  Google Scholar 

  • Matsumoto, H., and Ajmone-Marsan, C., 1964b, Cortical cellular phenomena in experimental epilepsy: Ictal manifestations, Exp. Neurol. 9: 305–326.

    Article  Google Scholar 

  • McCarren, M., and Alger, B.E., 1985, Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro, J. Neurophysiol. 53: 557–571.

    Google Scholar 

  • Newberry, N.R., and Nicoll, R.A., 1984, A bicu-culline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro, J. Physiol. (Lond.) 348: 239–254.

    Google Scholar 

  • Newberry, N.R., and Nicoll, R.A., 1985, Comparison of the action of baclofen with Îł-aminobutyric acid on rat hippocampal pyramidal cells in vitro, J. Physiol. (Lond.) 360: 161–185.

    Google Scholar 

  • Novak, L., Bregestovski, P., Ascher, P., Herbert, A., and Prochiantz, A., 1984, Magnesium gates glutamic activated channels in mouse central neurons, Nature (Lond.) 307: 462–465.

    Article  Google Scholar 

  • Perreault, P., and Avoli, M., 1988, A depolarizing inhibitory postsynaptic potential activated by synaptically released Îł-aminobutyric acid under physiological conditions in rat hippocampal pyramidal cells, Can. J. Physiol. Pharmacol. 66: 1100–1102.

    Article  Google Scholar 

  • Perreault, P., and Avoli, M., 1989, Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus, J. Neurophysiol. 61(5): 953–970.

    Google Scholar 

  • Prince, D.A., 1978, Neurophysiology of epilepsy, Ann. Rev. Neurosci. 1: 395–415.

    Article  Google Scholar 

  • Prince, D.A., and Connors, B.W., 1986, Mechanisms of interictal epileptogenesis, in: Advances in Neurology, (A.V. Delgado-Escueta, A.A. Ward, Jr., D.M. Woodbury, and R.J. Porter, eds), Raven Press, New York, pp. 275–299.

    Google Scholar 

  • Prince, D.A., and Farrell, D., 1969, “Centren-cephalic” spike-wave discharges following parenteral penicillin injection in the cat. Neurology (Minn.) 19: 309–310.

    Google Scholar 

  • Pumain, R., Kurcewicz, I., and Louvel, J., 1983, Fast extracellular calcium transients: Involvement in epileptic processes, Science 222: 177–179.

    Article  Google Scholar 

  • Pumain, R., Menini, C., Heinemann, U., Louvel, J., and Siva-Barrat, C., 1985, Chemical synaptic transmission is not necessary for epileptic seizures to persist in the baboon Papio papio, Exp. Neurol. 89: 250–258.

    Article  Google Scholar 

  • Quesney, L.F., and Gloor, P., 1978, Generalized penicillin epilepsy in the cat: Correlation between electrophysiological data and distribution of 14C-penicillin in the brain, Epilepsia 19: 34–45.

    Google Scholar 

  • Reynolds, E.H., 1988, The prevention of chronic epilepsy, Epilepsia, 29,Suppl. 1: 525–528

    Google Scholar 

  • Reynolds, E.H., Elwes, R.D.C., and Shorvon, S.D., 1983, Why does epilepsy become intractable? Lancet 2: 952–954.

    Article  Google Scholar 

  • Schwartzkroin, P.A., and Pedley, D., 1979, Slow depolarizing potentials in “epileptic” neurons, Epilepsia 20: 267–277.

    Article  Google Scholar 

  • Schwartzkroin, P.A., and Prince, D.A., 1980, Changes in excitatory and inhibitory synaptic potentials leading to epileptogenic activity, Brain Res. 183: 61–76.

    Article  Google Scholar 

  • Schwartzkroin, P.A., and Stafstrom, C.E., 1980, Effects of EGTA on the calcium activated afterhyperpolarization in hippocampal CA3 pyramidal cells, Science 210: 1125–1126.

    Article  Google Scholar 

  • Stelzer, A., Kay, A.R., and Wong, R.K.S., 1988, GABAA-receptor function in hippocampal cell is maintained by phosphorylation factors, Science 241: 339–341.

    Article  Google Scholar 

  • Tancredi, V., and Avoli, M., 1987, Control of spontaneous epileptiform discharges by extracellular potassium: An “in vitro” study in the CA1 sub-field of the hippocampal slice, Exp. Brain Res. 67: 363–372.

    Article  Google Scholar 

  • Thallman, R.H., and Ayala, G.F., 1983, A late increase in K conductance follows synaptic stimulation of granule neurons of the dentate gyrus, Neurosci. Lett. 23: 243–248.

    Google Scholar 

  • Thesleff, S., 1980, Aminopyridines and synaptic transmission, Neuroscience 5: 1413–1419.

    Article  Google Scholar 

  • van Gelder, N.M., Siatitsas, I., Menini, C., and Gloor, P., 1984, Feline generalized penicillin epilepsy: Changes in glutamic acid and taurine parallel the progressive increase in excitability of the cortex, Epilepsia 24: 200–213.

    Article  Google Scholar 

  • Wong, R.K.S., and Prince, D.A., 1979, Dendritic mechanisms underlying penicillin-induced epileptiform activity, Science 204: 1228–1231.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Avoli, M., Gloor, P., Kostopoulos, G. (1990). Focal and Generalized Epileptiform Activity in the Cortex: In Search of Differences in Synaptic Mechanisms, Ionic Movements, and Long-Lasting Changes in Neuronal Excitability. In: Avoli, M., Gloor, P., Kostopoulos, G., Naquet, R. (eds) Generalized Epilepsy. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6767-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6767-3_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6769-7

  • Online ISBN: 978-1-4684-6767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics