Skip to main content

Theoretical Models of Aspartic Proteases: Active Site Properties, Dimer Stability and Interactions with Model Inhibitors

  • Chapter
Structure and Function of the Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 306))

Abstract

HIV-1 PR, an aspartic proteinase (AP), is recognized now as an important target for designing effective and selective drugs which could arrest the late stages in replication of HIV-1, the causative agent of AIDS.1 Selectivity of such enzyme inhibitors is required in addition to high affinity. The most spectacular difference between HIV-1 PR, a retroviral enzyme, and the cellular AP, is the smaller size and dimeric structure of the former. The conservation of active site residues, Asp-Thr/Ser-Gly, seems to eliminate the ability to design selective active-site inhibitors for AP.2 This is, however, achieved by accumulated experience with the construction of novel renin inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Mitsuya, R. Yarchoan and S. Broder, Science 249: 1533 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. I. T. Weber, J. Biol. Chem. 265: 10492 (1990).

    PubMed  CAS  Google Scholar 

  3. A. Goldblum, Biochem. Biophys. Res. Comm. 157: 450 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. A. Goldblum, FEBS Lett. 261: 241 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. M. Miller, J. Schneider, B. K. Sathyanarayana, M. V. Toth, G. R. Marshall, L. Clawson, L. Selk, S. B. H. Kent and A. Wlodawer, Science 246: 1149 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. R. Lapatto, T. Blundell, A. Hemmings, J. Overington, A. Wilderspin, S. Wood, J. R. Merson, P. J. Whittle, D. E. Danley, K. F. Geoghegan, S. J. Hawrylik, S. E. Lee, K. G. Scheid and P. M. Hobart, Nature 342: 299 (1989).

    Article  PubMed  CAS  Google Scholar 

  7. L. Pearl and T. L. Blundell, FEBS Lett. 174: 96 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. K. Suguna, E. A. Padlan, C. W. Smith, W. D. Carlson and D. R. Davies, Proc. Nat. Acad. Sci. U.S.A. 84: 7009 (1987).

    Article  CAS  Google Scholar 

  9. M. N. G. James and A. R. Sielecki, J. Mol. Biol. 163: 299 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. A. Goldblum, J. Comp. Chem. 8: 835 (1987).

    Article  CAS  Google Scholar 

  11. E. L. Mehler, Protein Engng. 3: 415 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Rayan, A., Fliess, A., Kotler, M., Chorev, M., Goldblum, A. (1991). Theoretical Models of Aspartic Proteases: Active Site Properties, Dimer Stability and Interactions with Model Inhibitors. In: Dunn, B.M. (eds) Structure and Function of the Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 306. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6012-4_76

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6012-4_76

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6014-8

  • Online ISBN: 978-1-4684-6012-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics