Skip to main content

Localization of Insulin and Type 1 IGF Receptors in Rat Brain by in Vitro Autoradiography and in Situ Hybridization

  • Chapter
Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 293))

Abstract

Insulin and the insulin-like growth factors (IGFs) are structurally related, circulating hormones that regulate growth and intermediary metabolism in virtually all tissues. In many organs their function has been well defined but in the adult CNS no general understanding of their action and importance is available. For many years it has been known that circulating insulin can affect the CNS directly to regulate peripheral metabolism (1). The hypothalamus is considered the most likely site of these actions (2). Our laboratory has been particularly interested in the ability of insulin to reduce food intake and act as a regulator of body weight. This has been demonstrated by peripheral infusions of insulin (3) or by injecting insulin into the third ventricle (4) or into the hypothalamus (5). Electrophysiological studies in hypothalamus (6) and hippocampus (7) support this hypothesis by demonstrating that insulin can affect the firing rate of neurons and therefore can act as a neuromodulator or possibly neurotransmitter. Insulin’s inhibition of norepinephrine uptake in cultured neonatal neurones supports a neuromodulatory role for insulin (8). Recently, Figlewicz has confirmed this finding in hippocampal slices from adult rats (9). A role for IGFs as neuromodulators in the adult brain has also been suggested. IGF-1 can affect the release of acetylcholine from hippocampal slices (10) while IGF-2 but not IGF-1 reduces food intake when injected into the third ventricle and may be a physiological satiety factor (11). In the hypothalamus, IGF-1 may modulate release of somatostatin and thereby regulate growth hormone release from the pituitary (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Szabo AJ and Szabo O. Insulin injected into CNS structures or into the carotid artery: effect on carbohydrate homeostasis of the intact animal. In: Szabo AJ (ed) CNS Regulation of Carbohydrate Metabolism, Advances in Metabolic Disorders vol 10, Academic Press, New York, p 385. 1983.

    Google Scholar 

  2. Debons AF, Krimsky I and From A. A direct effect of insulin on the hypothalamic satiety center. Am J Physiol. 219:938, 1970.

    PubMed  CAS  Google Scholar 

  3. Vanderweele DA, Pi-Sumner IX, Novin D and Bush J. Chronic insulin infusion suppresses food ingestion and body weight gain in rats, Brain Res Bull. 5:l:7–l 1, 1980.

    Article  Google Scholar 

  4. Woods SC, Lotter EC, McKay LD and Porte D Jr. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight in baboons. Nature282:503, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Mcgowan MK, Andrews KM, Kelly J and Grossman SP. Effects of chronic intrahypothalamic infusion of insulin on food intake and diurnal meal patterning in the rat. Behav Neurosci. 104:371, 1990.

    Article  Google Scholar 

  6. Oomura Y and Kita H. Insulin acting as a modulator of feeding through the hypothalamus. Diabetologia 20:290, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Palovcik R, Phillips MI, Kappy MS and Raizada MK. Insulin inhibits pyramidal neurons in hippocampal slices. Brain Res. 309: 187, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Boyd FT, Clarke DW, Muther TF, et al. Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J Biol Chem. 260: 15880, 1985.

    PubMed  CAS  Google Scholar 

  9. Figlewicz DP, personal communication.

    Google Scholar 

  10. Araujo DM, Lapchak PA, Collier B, Chabot J-G and Quirion R. Insulin-like growth factor-1 (somatomedin-C) rteceptors in the rat brain:distribution and interaction with the hippocampal cholinergic system. Brain Res. 484:130, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Lauterio TJ, Marson L, Daughaday WH and Baile CA. Evidence for the role of insulinlike growth factor II(IGF II) in the control of food intake. Physiol Behav. 40:755, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Berelowitz M, Szabo M, Frohman LA, Firestone SL, Chu L and Hintz RL. Somatomedin-C mediates growth hormone negative feedback by effects on both the hypothalamus and pituitary. Science 212:1279, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Baskin DG, Porte D Jr, Guest K and Dorsa DM. Regional concentrations of insulin in the rat brain. Neuroendocrinology 112:898, 1983.

    CAS  Google Scholar 

  14. Dorn A, Bernstein H-G, Hahn H-J, Ziegler M and Rummelfanger H. Insulin immunohistochemistry of rodent CNS: apparent species differences but good correlation with radioimmunological data. Histochemistry 71:60, 1981.

    Article  Google Scholar 

  15. Giddings SJ, Chirgwin J and Permutt MA. Evaluation of rat insulin messenger RNA in pancreatic and extrapancreatic tissues. Diabetologia 28:343, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Young WS. Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 8:93, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. ClarkeDW, Mudd L, Boyd FT Jr, Fields M and Raizada MK. Insulin is released from rat brain neuronal cells in culture. J. Neurochem. 47:831, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Schwarz MW, Kahn SE, Taborsky GJ Jr, Bergman RN and Porte D Jr. Saturable transport of plasma insulin into the central nervous system (CNS). Soc Neurosci Abstracts 16:979, 1990.

    Google Scholar 

  19. Carlsson-Skwirut C, Jornvall H, Holmgren A et al. Isolation and characterization of variant IGF-1 as well as IGF-2 from adult human brain. FEBS Lett. 201:46, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Andersson IK, Edwall D, Norstedt G, Rozell B, Skottner A and Hansson HA. Differing expression of insulin-like growth factor I in the developing and in the adult rat cerebellum. Acta Physiol Scand. 132:167, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Werther GA, Abate M, Hogg A et al. Localization of insulin-like growth factor-1 mRNA in rat brain by in situ hybridization-relationship to IGF-1 receptors. Mol Endocrinology 4:773, 1990.

    Article  CAS  Google Scholar 

  22. Rotwein P, Burgess SK, Milbrandt JD and Krause JE. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA. 85:265, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Hasselbacher GK, Schwab ME, Pasi A and Humbel RE. Insulin-like growth factor II(IGF II) in human brain: regional distribution of IGF II and of higher molecular mass forms. Proc Natl Acad Sci USA. 82:2153, 1985.

    Article  Google Scholar 

  24. Stylianopoulou F, Herbert J, Soares MB and Efstratiadis A. Expression of the insulin-like growth factor II gene in the choroid plexus and leptomeninges of the rat central nervous system. Proc Natl Acad Sci USA.85:141, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Lauterio TJ, Aravich PF and Rotwein P. Divergent effects of insulin and insulin-like growth factor-II gene expression in the rat hypothalamus. Endocrinology 126:392, 1990

    Article  PubMed  CAS  Google Scholar 

  26. Havrankova J and Roth J. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827, 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Marks JL, Maddison J and Eastman CJ. Subcellular localization of rat brain insulin binding sites. J Neurochem 50:774, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Gammeltoft S, Haselbacker GK,Humbel RE, Fehlmann M and Van Obberghen E. Two typers of receptors for insulin-like growth factors in mammalian brain. EMBO J. 4:3407, 1985.

    PubMed  CAS  Google Scholar 

  29. Heidenreich KA, Zahniser NR, Berhanu P, Brandenburg D and Olefsky JM. Structural differences between insulin receptors in the brain and peripheral tissues. J Biol Chem. 258:8527, 1983.

    PubMed  CAS  Google Scholar 

  30. Mcelduff A, Poronnik P and Baxter RC. The insulin-like growth factor-II (IGF II) receptor from rat brain is of lower apparent molecular weight than the IGF II receptor from rat liver. Endocrinology 121:1306, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Havrankova J, Roth J and Brownstein M. Concentrations of insulin and of insulin receptors in the brain are independent of peripheral insulin levels. J Clin Invest. 64:636, 1979.

    Article  PubMed  CAS  Google Scholar 

  32. Marks JL and Eastman CJ. Effect of starvation on insulin binding in rat brain. Neurosci. 30:551, 1989.

    Article  CAS  Google Scholar 

  33. Marks JL and Eastman CJ. Ontogeny of insulin binding in different regions of rat brain. Developmental Neurosci. in press.

    Google Scholar 

  34. Figlewicz DP, Ikeda H, Hunt T, Stein R et al. Brain insulin binding is decreased in Wistar-Kyoto rats carrying the “fa” gene. Peptides 7:61, 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Bondy CA, Werner H, Roberts CT Jr and Leroith D. Cellular pattern of insulin-like growth factor-1 (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF II gene expression. Mol Endocrinology 4: 1386, 1990.

    Article  CAS  Google Scholar 

  36. Pomerance M, Gavaret J-M, Jacquemin C, Matricon C, Toru-Delbauffe D and Pierre M. Insulin and insulin-like growth factor 1 receptors during postnatal development of rat brain. Dev Brain Res. 42:77, 1988.

    Article  CAS  Google Scholar 

  37. Bohannon NJ, Corp ES, Wilcox BJ, Figlewicz DP, Dorsa DM and Baskin DG. Characterization of insulin-like growth factor-1 receptors in the median eminence of the rat brain and their modulation by food restriction. Endocrinology 122:1940, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Bohannon NJ, Corp ES, Wilcox BJ, Figlewicz DP, Dorsa DM and Baskin DG. Localization of binding sites for insulin-like growth factor-1 (IGF-1) in the rat brain by quantitative autoradiography. Brain Res. 444:205, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Werther GA, Hogg A, Oldfield BJ, et al. Localization and characterization of insulin receptors in the rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121:1562,1987.

    Article  PubMed  CAS  Google Scholar 

  40. Lesniak MA, Hill JM, Kiess W, Rojeski M, Pert CB and Roth J. Receptors for Insulinlike growth factors I and II: autoradiographic localization in rat brain and comparison to receptors for insulin. Endocrinology 123:2089, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Marks JL, Porte D Jr, Stahl WL and Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology in press.

    Google Scholar 

  42. Wei L, Matsumoto H and Rhoads DE. Release of immunoreactive insulin from rat brain synaptosomes under depolarizing conditions. J Neurochem. 54:1661, 1990

    Article  PubMed  CAS  Google Scholar 

  43. King MG, Franck JE and Baskin DG. Localization of insulin and insulin-like growth factor (IGF) receptors in rat hippocampus following kainate and ischemic lesions. Soc Neurosci Abstracts 16:431, 1990.

    Google Scholar 

  44. Wilcox BJ, Matsumoto AM, Dorsa DM and Baskin DG. Reduction of insulin binding in the arcuate nucleus of the rat hypothalamus after 6-hydroxydopamine treatment. Brain Res. 500:149, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Williams G, Steel JH, Cardoso H et al. Increased hypothalamic neuropeptide Y concentrations in diabetic rat. Diabetes 37:763,1988.

    Article  PubMed  CAS  Google Scholar 

  46. Stanley BG, Kyrkouli SE and Lampert S. Neuropeptide Y chronically injected into the hypothalamus: a powerful neurochemical inducer of hyperphagia and obesity. Peptides 7:1189 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Kalra SP, Clark JT, Sahu A, Kalra PS and Crowley WR. Hypothalamic NPY: a local circuit in the control of reproduction and behaviour. In: Mutt V et al (eds) Neuropeptide Y. Raven Press, New York, p 229, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Marks, J.L., King, M.G., Baskin, D.G. (1991). Localization of Insulin and Type 1 IGF Receptors in Rat Brain by in Vitro Autoradiography and in Situ Hybridization. In: Raizada, M.K., LeRoith, D. (eds) Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Advances in Experimental Medicine and Biology, vol 293. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5949-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5949-4_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5951-7

  • Online ISBN: 978-1-4684-5949-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics