Skip to main content

Haemopoietic Regulation and the Role of the Macrophage in Erythropoietic Gene Expression

  • Chapter
Molecular Biology of Hemopoiesis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 34))

Abstract

The macrophage is considered as an “active” component of the haemopoietic cellular microenvironment with respect to erythropoietin (epo) production during embryonic, foetal and adult erythropoiesis. Emphasis is placed on steady-state rather than pathophysiological conditions. In addition, the signals capable of affecting the functional capacity of the macrophage with regard to colony stimulating factor and epo production are also taken into account. Evidence is given demonstrating that a subpopulation of resident macrophages in vitro and in the mouse bone marrow, under normal conditions, can express the epo gene. These results indicate that erythropoiesis can be regulated by short-range or cell-to-cell interactions within the bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dexter, T.M. 1981. Self-renewing haemopoietic progenitor cells and the factors controlling proliferation and differentiation. In: Microenvironments in Haemopoietic and Lymphoid Differentiation. Ciba Foundation Symposium. Vol 84. 22–31.

    Google Scholar 

  2. Moore, M.A.S., and J.J.T. Owen. 1967. Stem cell migration in developing myeloid systems. Lancet 2: 658–659.

    Article  Google Scholar 

  3. Johnson, G.R. and M.A.S. Moore. 1975. Role of stem cell migration of mouse fetal liver hemopoiesis. Nature 258: 726–728.

    Article  PubMed  CAS  Google Scholar 

  4. Wong, P.M.C., S-W. Chung, S.M. Reicheld, and D.H.K. Chui. 1986 Hemoglobin switching during murine embryonic development. Evidence for two populations of embryonic erythropoietic progenitor cells. Blood 67: 716–721.

    PubMed  CAS  Google Scholar 

  5. Wong, P.M.C., S-W. Chung, D.H.K. Chui, and C.J. Eaves. 1986. Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac. Proc. Natl. Acad. Sci. USA 38: 3851–3854.

    Article  Google Scholar 

  6. Fleischman, R.A., R.P. Custer, and B. Mintz. 1982. Totipotent hemopoietic stem cells: Normal self-renewal and differentiation after transplantation between fetuses. Cell 30: 351–359.

    Article  PubMed  CAS  Google Scholar 

  7. Bessis, M.C. and J. Breton-Gorius. 1962. Iron metabolism in the bone marrow as seen by electron microscopy: a critical Review. Blood 19: 635–663.

    PubMed  CAS  Google Scholar 

  8. Jacobson, L.O., E.K. Marks, and E.O. Gaston. 1959. Studies on erythropoiesis. II. The effect of transfusion-induced polycythemia in the mother on the fetus. Blood 14: 644–652.

    PubMed  CAS  Google Scholar 

  9. Lucarelli, G., A. Porcellini, C. Carnevali, A. Carmena, and F. Stohlman, Jr. 1968. Fetal and neonatal erythropoiesis. Ann. N.Y. Acad. Sci. 149: 544–559.

    Article  PubMed  CAS  Google Scholar 

  10. Bleiberg, I. and M. Feldman. 1969. On the regulation of hemopoietic spleen colonies produced by embryonic and adult cells. Dev. Biol. 19: 566–580.

    Article  PubMed  CAS  Google Scholar 

  11. Cole, R.J. and J. Paul. 1966. The effects of erythropoietin on haemsynthesis in mouse yolk sac and cultured foetal liver cells. J. Embryol. Exp. Morph. 15: 245–260.

    PubMed  CAS  Google Scholar 

  12. Cole, R.J., T. Regen, S.L. White, and E.M. Cheek. 1975. The relationship between erythropoietin-dependent cellular differentiation and colony-forming ability in prenatal haemopoietic tissue. J. Embryol. Exp. Morph. 34: 575–588.

    PubMed  CAS  Google Scholar 

  13. Stevenson, J.R., A.A. Axelrad, D.L. McLeod, and M.M. Shreeve. 1971. Induction of colonies of haemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68: 1542–1546.

    Article  Google Scholar 

  14. Rich, I.N. and B. Kubanek. 1979. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. I. Hepatic and maternal erythropoiesis. J. Embryol. Exp. Morph. 50: 57–74.

    PubMed  CAS  Google Scholar 

  15. Rich, I.N. and B. Kubanek. 1980. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. II. Transition in erythropoietin sensitivity during development. J. Embryol. Exp. Morph. 58: 143–155.

    PubMed  CAS  Google Scholar 

  16. Labastie, M-C., J-P. Thiery, and N.M. Le Douarin. 1984. Mouse yolk sac and intraembryonic tissues produce factors able to elicit differentiation of erythroid burst-forming units and colony-forming units respectively. Proc. Natl. Acad. Sci. USA 81: 1453–1456.

    Article  PubMed  CAS  Google Scholar 

  17. Dieterlan-Lievre, F. 1987. Respective roles of programme and differentiation factors during hemoglobin switching in the embryo. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis, Rich, I.N. editor. NATO ASI Series, Vol H8, Springer-Verlag Berlin Heidelberg, pp 127–145.

    Google Scholar 

  18. Gruber, D.F., J.R. Zucali, and E.A. Mirand. 1977. Identification of erythropoietin producing cells in fetal mouse liver cultures. Exp. Hemat. 5: 392–398.

    PubMed  CAS  Google Scholar 

  19. Kelemen, E. and M. Janossa. 1980. Macrophages are the first differentiated blood cells formed in human embryonic liver. Exp. Hemat. 8: 996

    PubMed  CAS  Google Scholar 

  20. Hara, H. and M. Ogawa. 1976. Erythropoietic precursors in mice with phenylhydrazine-induced anemia. Am. J. Hemat. 1: 453–458.

    Article  PubMed  CAS  Google Scholar 

  21. Boggs, D.R., A. Geist, and P.A. Chervenick. 1969. Contribution of the mouse spleen to post-hemorrhagoic erythropoiesis. Life Sci. 8: 587–599.

    Article  PubMed  CAS  Google Scholar 

  22. Crandall, T.L. and D.R. Boggs. 1980. Response of hepatic hematopoiesis to whole body irradiation. Exp. Hemat. 8: 25–31.

    PubMed  CAS  Google Scholar 

  23. Koury, M.J., S.T. Sayer, and M.C. Bondurant. 1984. Splenic erythro-blasts in anemia-inducing Friend disease. A source of cells for studies of erythropoietin-mediated differentiation. J. Cell Physiol. 121: 526–532.

    Article  PubMed  CAS  Google Scholar 

  24. Kreja, L. and H-J. Seidel. 1985. Role of the spleen in Friend virus (F-MULV-P) erythroleukemia. Exp. Hemat. 13: 623–628.

    PubMed  CAS  Google Scholar 

  25. Opitz, U., H-J. Seidel, and I.N. Rich. 1977. Erythroid stem cells in Rauscher virus-infected mice. Blut 35: 35–44.

    Article  PubMed  CAS  Google Scholar 

  26. Arnold, R., W. Calvo, B. Heymer, T. Schmeiser, H. Heimpel, and B. Kubanek. 1985. Extramedullary haemopoiesis after bone marrow transplantation. Scand. J. Haemat. 34: 9–12.

    Article  PubMed  CAS  Google Scholar 

  27. Fruhman, G.J. 1968. Blood formation in the pregnant mouse. Blood 31: 242–248.

    PubMed  CAS  Google Scholar 

  28. Peschle, C., I.A. Rappaport, G.P. Jori, M. Chiarello, and A.S. Gordon. 1976. Sustained erythropoietin productin in nephrectomized rats subjected to hypoxia. Brit. J. Haemat. 25: 187.

    Article  Google Scholar 

  29. Schooley, J.C. and L.J. Mahlman. 1974. Extrarenal erythropoietin production by the liver in the weanling rat. Proc. J. Soc. Exptl. Biol. Med. 145: 1081–1083.

    CAS  Google Scholar 

  30. Adams, D.O. and T.A. Hamilton. 1984. The cell biology of macrophage activation. Ann. Rev. Immunol. 2: 283–318.

    Article  CAS  Google Scholar 

  31. Rich, I.N. 1986. A role for the macrophage in normal hemopoiesis. I. Functional capacity of bone marrow-derived macrophages to release hemopoietic growth factors. Exp. Hemat. 14: 738–745.

    PubMed  CAS  Google Scholar 

  32. Cronkite, E.P., H. Burlington, A.D. Chanana, and D.D. Joel. 1985. Regulation of granulopoiesis. in: Hematopoietic Stem Cell Physiology. Cronkite, E.P., Dainiak, N., McCaffrey, R.P., Palek, J. and Quenberry, P.J., editors. Alan R. Liss, Inc., New York. 129 - 144.

    Google Scholar 

  33. Broxmeyer, H.E. 1984. Negative regulators of hematopoiesis. In: Long-Term Bone Marrow Culture. Alan R. Liss, Inc., New York. 363–397.

    Google Scholar 

  34. Sawatzki, G. 1987. The role of iron-binding proteins in bacterial infection. Ins Iron Transport in Microbes, Plants and Animals. Winkelman, G., von de Helm, D. and Neilands, J.B., editors. VCH Verlagsgesellschaft, Weinheim, F.R.G. 477–489.

    Google Scholar 

  35. Robinson, W.A. and A. Mangalik. 1975. The kinetics and regulation of granulopoiesis. Sem. Hemat. 12: 7–25.

    CAS  Google Scholar 

  36. Quesenberry, P., A. Morley, F. Stohlman, Jr., K. Richard, D. Howard, and M. Smith. 1972. Effect of endotoxin on granulopoiesis and colony-stimulating factor. New Engl. J. Med. 286: 227.

    Article  PubMed  CAS  Google Scholar 

  37. Rich, I.N. and G. Sawatzki. 1987. The role of lactoferrin in regulating colony stimulating factor production. In: The Inhibition of Hematopoiesis. Nayman, A., Guigon, M., Gorin, N-C., and Mary, J-Y., editors. John Libbey Eurotext Ltd. 162: 63–66.

    Google Scholar 

  38. Strickmans, P., A. Deforge, and R.B. Amson. 1986. Lactoferrin: No evidence for its role in regulation of CSA production by human lymphocytes and monocytes. Blood Cells 10: 369–395.

    Google Scholar 

  39. Winton, E.F., J.M. Kinkade, W.R. Vogler, M.B. Parker, and K.C. Barnes. 1981. In vitro studies of lactoferrin and murine granulopoiesis. Blood 57: 574–578.

    PubMed  CAS  Google Scholar 

  40. Rich, I.N. 1986. A role for the macrophage in normal hemopoiesis. II. Effect of varying physiological oxygen tensions on the release of hemopoietic growth factors from bone marrow-derived macrophages in vitro. Exp. Hemat. 14: 746–751.

    PubMed  CAS  Google Scholar 

  41. Bondurant, M. and M. Koury. 1986. Anemia induces accumulation of erythropoietin mRNA in the kidney and liver. Mol. Cell Biol. 6: 2731–2733.

    PubMed  CAS  Google Scholar 

  42. Schuster, S.J., J.H. Wilson, A.J. Erselv, and J. Caro. 1987. Physiologic regulation and tissue localisation of renal erythropoietin messenger RNA. Blood. 70: 316–318.

    PubMed  CAS  Google Scholar 

  43. Jacobson, L.O., E. Goldwasser, W. Fried, and L. Plazck. 1957. Role of the kidney in erythropoiesis. Nature. 179: 633–634.

    Article  PubMed  CAS  Google Scholar 

  44. Sherwood, J.B., and E. Goldwasser. 1978. Extraction of erythropoietin from normal kidneys. Endocrinol. 103: 866–870.

    Article  CAS  Google Scholar 

  45. Goldwasser, E., J. McDonald, and N. Beru. 1987. The molecular biology of erythropoietin and the expression of its gene, in: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. Rich, I.N., editor. NATO ASI Series, Vol. H8. Springer-Verlag, Heidelberg. 11–21.

    Chapter  Google Scholar 

  46. Caro, J. and A.J. Erselv. 1984. Biologic and immunologic erythropoietin in extracts from hypoxic whole rat kidneys and in their glomerular and tubular factions. J. Lab. Clin. Med. 103: 922–931.

    PubMed  CAS  Google Scholar 

  47. Caro, J., J. Hickey, and A.J. Erslev. 1984. Erythropoietin production by an established kidney proximal tubular cell line (LLCPKl). Exp. Hemat. 12: 357A.

    Google Scholar 

  48. Fisher, J.W., G. Taylor, and D. Porteous. 1965. Localisation of erythropoietin in glomeruli of sheep kidney by fluorescent antibody technique. Nature. 205–611.

    Google Scholar 

  49. Burlington, H., E.P. Cronkite, U. Reincke, and E. Zanjani. 1972. Erythropoietin production in cultures of goat renal glomeruli. Proc. Natl. Acad. Sci. USA. 69: 3547.

    Article  PubMed  CAS  Google Scholar 

  50. Kurtz, A., W. Jelman, F. Sinowatz, and C. Bauer. 1983. Renal mesangial cell cultures as a model for study of erythropoietin production. Proc. Natl. Acad. Sci. USA. 80: 4008.

    Article  PubMed  CAS  Google Scholar 

  51. Jelkman, W., A. Kurtz, and C. Bauer. 1983. Extraction of erythropoietin from isolated renal glomeruli of hypoxic rats. Exp. Hemat. 11: 581–588.

    Google Scholar 

  52. Rich, I.N. 1987. Erythropoietin production by macrophages: Cellular response to physiological oxygen tensions and detection of erythropoietin gene expression by in situ hybridisation. In: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis. Rich, I.N. editor. NATO ASI series, Vol H8. Springer-Verlag, Heidelberg. 291–310.

    Chapter  Google Scholar 

  53. Vogt, Ch., S. Pentz, and I.N. Rich. A role for the macrophage in normal hemopoiesis: III. In vitro and in vivo in situ hybridisation. Submitted for publication.

    Google Scholar 

  54. Rich, I.N., Ch. Vogt, and S. Pentz. 1988. Erythropoietin gene expression in vitro and in vivo detection by in situ hybridisation. Blood Cells. In Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Rich, I.N. (1988). Haemopoietic Regulation and the Role of the Macrophage in Erythropoietic Gene Expression. In: Tavassoli, M., Zanjani, E.D., Ascensao, J.L., Abraham, N.G., Levine, A.S. (eds) Molecular Biology of Hemopoiesis. Advances in Experimental Medicine and Biology, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5571-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5571-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5573-1

  • Online ISBN: 978-1-4684-5571-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics