Skip to main content

Models of Aldosterone Action on Sodium Transport: Emerging Concepts

  • Chapter
Steroid Hormone Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 196))

Abstract

This article will detail models of aldosterone action in target epithelia such as kidney and toad bladder with respect to Na transport. The renal target cell responsible for aldosterone-dependent Na reabsorption is considered to be the cortical collecting tubule (CCT), while that responsible for acid secretion is characterized by the inner strip of the outer medullary collecting duct.1 An analogous situation is found in toad bladder, with one cell type (granular cell) responsible for aldosterone-dependent Na reabsorption while another (mitochondrial-rich cell) modulating acid secretion in response to steroid.2 With respect to K transport, these two tissues differ, in that aldosterone does not modify the secretory rate of K in the toad bladder due to a vanishingly small apical membrane K permeability, while in the mammalian kidney, aldosterone both increases the urinary excretion of K and the secretion of K by CCTs under steady-state conditions.3–5 With regard to the Na reabsorbing cell, the following paragraphs will both detail existing data and the various working hypotheses currently being evaluated to interpret that data with respect to the means by which aldosterone alters (a) luminal membrane Na permeability, and (b) NaK ATPase activity. In addition, the possible roles of energy and phospholipid metabolism in this process will be discussed. Since some actions of aldosterone parallel those of ADH (antidiuretic hormone), data on both hormones will be contrasted as appropriate in order to help narrow the possible explanations into a cohesive model for the Na reabsorbing cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Marver, Evidence of corticosteroid action along the nephron. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15): F111 (1984).

    PubMed  CAS  Google Scholar 

  2. D. Marver, Aldosterone action in target epithelia. In: Munson P (ed) Vitamins and Hormones, vol. 12. Academic Press, New York, p. 55 (1981).

    Google Scholar 

  3. H. J. Rodriguez, W. P. Weismann, S. Klahr, Effects of aldosterone on K transport in the toad bladder. Am. J. Physiol. 229: 99 (1975).

    PubMed  CAS  Google Scholar 

  4. G. J. Schwartz, M. B. Burg, Mineralocorticoid effects on cation transport by CCTs in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol 4): F576 (1978).

    PubMed  CAS  Google Scholar 

  5. M. J. Field, B. A. Stanton, G. H. Giebisch, Differential acute effects of aldosterone, dexamethasone and hyperkalemia on distal tubular K secretion in the rat kidney. J. Clin. Invest. 74: 1792 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. D. Marver, J. Stewart, J. W. Funder, D. Feldman, I. S. Edelman, Renal aldosterone receptors: studies with 3H aldosterone and the anti-mineralocorticoid 3H spirolactone SC-26304. Proc. Natl. Acad. Sci. USA 71: 1431 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. B. Lindemann, W. Van Driessche, Na specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 195: 292 (1977).

    Article  PubMed  CAS  Google Scholar 

  8. H. S. Chase, Q. A1-Awqati, Calcium reduces the Na permeability of luminal membrane vesicles from toad bladder. J. Gen. Physiol. 81: 643 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. L. G. Palmer, J. H.-Y. Li, B. Lindemann, I. S. Edelman, Aldosterone control of the density of Na channels in the toad urinary bladder. J. Membrane Biol. 64: 91 (1982).

    Article  CAS  Google Scholar 

  10. I. S. Edelman, Aldosterone and Na transport. In: McKerns K. W. (ed) Functions of the Adrenal Cortex. Appleton-CenturyCrofts, New York, p. 80 (1968).

    Google Scholar 

  11. I. S. Edelman, G. M. Fimognari, On the biochemical mechanism of action of aldosterone. Recent Prog. Horm. Res. 24: 1 (1968).

    PubMed  CAS  Google Scholar 

  12. H. S. Frazier, E. J. Dempsey, A. Leaf, Movement of Na across the mucosal surface of the isolated toad bladder and its modification by ADH. J. Gen. Physiol. 45: 529 (1962).

    Article  PubMed  CAS  Google Scholar 

  13. N. S. Lichtenstein, A. Leaf, Effect of amphotericin B on the permeability of the toad bladder. J. Clin. Invest. 44: 1328 (1965).

    Article  PubMed  CAS  Google Scholar 

  14. A. Frenkel, M. Ekblad, I. S. Edelman, Effects of sulfhydryl reagents on basal and ADH-stimulated Na transport in toad bladder. Biomembranes 7: 61 (1975).

    PubMed  CAS  Google Scholar 

  15. W. P. Weismann, P. K. Chiang, J. P. Johnson, Aldosterone stimulates phospholipid methylations in cultured toad urinary bladder. Clin. Res. 31: 445A (1983).

    Google Scholar 

  16. W. P. Weismann, J. P. Johnson, S. Sariban-Sohraby, M. B. Burg, Methylation stimulates Na uptake in apical membrane vesicle from A6 cells: similarity to aldosterone. Clin. Res. 32: 459A (1984).

    Google Scholar 

  17. S. Sariban-Sohraby, M. Burg, W. P. Wiesmann, P. K. Chiang, J. P. Johnson, Methylation increases Na transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225: 745 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. R. F. O’Dea, O. H. Viveros, E. J. Diliberto, Protein carboxymethylation: role in the regulation of cell functions. Biochem. Pharm. 30: 1163 (1981).

    Article  PubMed  Google Scholar 

  19. V. P. S. Chauhan, V. K. Kalra, Effect of phospholipid methylation on Ca transport and Ca + Mg ATPase activity in kidney cortex basolateral membranes. BBA 727: 185 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. P. A. Craven, F. R. DeRubertis, Phospholipid methylation in Ca responsive renal medullary prostaglandin synthesis. Clin. Res. 31: 515A (1983).

    Google Scholar 

  21. T. Yorio, P. J. Bentley, Phospholipase A and the mechanism of action of aldosterone. Nature 271: 79 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. D. B. P. Goodman, J. B. Allen, H. Rasmussen, Studies on the mechanism of action of aldosterone: hormone-induced changes in lipid metabolism. Biochemistry 10: 3825 (1971).

    Article  PubMed  CAS  Google Scholar 

  23. E. L. Lien, D. B. P. Goodman, H. Rasmussen, Effects of an acetyl-coenzyme A carboxylase inhibitor and a Na-sparing diuretic on aldosterone-stimulated Na transport, lipid synthesis and phospholipid fatty acid composition in the toad urinary bladder. Biochemistry 14: 2749 (1975).

    Article  PubMed  CAS  Google Scholar 

  24. D. B. P. Goodman, M. Wong, H. Rasmussen, Aldosterone-induced membrane phospholipid fatty acid metabolism in the toad urinary bladder. Biochemistry 14: 2803 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. E. L. Lien, D. B. P. Goodman, H. Rasmussen, Effects of inhibitors of protein and RNA synthesis on aldosterone-stimulated changes in phospholipid fatty acid metabolism in the toad urinary bladder. BBA 421: 210 (1976).

    PubMed  CAS  Google Scholar 

  26. R. Kinne, R. Kirsten, Der einfluss von aldosterone and die aktivitat mitochondrialer and cytoplasmatischer enzyme in der rattenniere. Pflugers Arch. 300: 244 (1968).

    Article  CAS  Google Scholar 

  27. E. Kirsten, R. Kirsten, A. Leaf, G. W. G. Sharp, Increased activity of enzymes of the TCA cycle in response to aldosterone in the toad bladder. Pflugers Arch. 300: 213 (1968).

    Article  CAS  Google Scholar 

  28. P. Y. Law, I. S. Edelman, Induction of citrate synthase by aldosterone in the rat kidney. J. Molecular Biol. 41: 41 (1978).

    CAS  Google Scholar 

  29. R. C. DeSousa, A. Grosso, The mode of action of vasopressin: membrane microstructure and biological transport. J. Physiol. (Paris) 77: 643 (1981).

    CAS  Google Scholar 

  30. G. A. Porter, In vitro inhibition of aldosterone-stimulated Na transport by steroidal spirolactones. Mol. Pharmacol. 4:224 (1968).

    PubMed  CAS  Google Scholar 

  31. L. G. Palmer, I. S. Edelman, Control of apical Na permeability in the toad urinary bladder by aldosterone. Ann. NY Acad. Sci. 372: 1 (1981).

    Article  PubMed  CAS  Google Scholar 

  32. H. Garty, I. S. Edelman, Amiloride-sensitive trypsinization of apical Na channels. J. Gen. Physiol. 81: 785 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. C. S. Park, J. Kipnowski, D. D. Fanestil, Role of carboxyl group in Na entry step at apical membrane of toad urinary bladder. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14): F707 (1983).

    PubMed  CAS  Google Scholar 

  34. J. Kipnowski, C. S. Park, D. D. Fanestil, Modification of carboxyl of Na channel inhibits aldosterone action on Na transport. Am. J. Physiol. 245 (Renal Fluid Electrolyte Phyiol 14): F726 (1983).

    PubMed  CAS  Google Scholar 

  35. A. W. Cuthbert, N. K. Shum, Effects of ADH and aldosterone on amiloride binding in toad bladder epithelial cells. Proc. Royal Soc. London 189B: 543 (1975).

    Article  CAS  Google Scholar 

  36. J. H.-Y. Li, L. G. Palmer, I. S. Edelman, B. Lindemann, The role of Na-channel density in the natriferic response of the toad urinary bladder to ADH. J. Membrane Biol. 64: 77 (1982).

    Article  CAS  Google Scholar 

  37. C. Prasad, R. M. Edwards, Stimulation of rat pituitary phospholipid methyltransferase by ADH but not oxytocin. BBRC 103: 559 (1981).

    PubMed  CAS  Google Scholar 

  38. S. Alemahy, I. Varela, J. M. Mato, Stimulation by ADH and angiotensin of phospholipid methyltransferase in isolated rat hepatocytes. FEBS Letters 135: 111 (1981).

    Article  Google Scholar 

  39. J. M. Saavedra, Y. Kloog, C. Chevillard, J. Fernandez-Pardal, High-protein carboxylmethylase activity and low endogenous methyl acceptor proteins in posterior pituitary lobe of rats lacking neurophysin-ADH. J. Neurochemistry 41: 194 (1983).

    Google Scholar 

  40. A. Y.-C. Liu, P. Greengard, Aldosterone-induced increase in protein phosphatase activity of toad bladder. Proc. Natl. Acad. Sci. USA 71: 3869 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. L. G. Palmer, I. S. Edelman, B. Lindemann, Current-voltage analysis of apical Na transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J. Membrane Biol. 57: 59 (1980).

    Article  CAS  Google Scholar 

  42. S. K. Masur, Gronowicz, Ruthenium red and horseradish peroxidase used as a double marker to demonstrate endocytosis. Quantitative EM and cytochemical studies of ADH action in toad bladder. In: Physical Methods in the Study of Epithelia. New York, Alan R. Liss, Inc., p. 197 (1983).

    Google Scholar 

  43. S. A. Lewis, J. L. C. de Moura, Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297: 685 (1982).

    Article  PubMed  CAS  Google Scholar 

  44. D. L. Stetson, S. A. Lewis, W. Alles, J. B. Wade, Evaluation by capacitance measurements of ADH induced membrane area changes in toad bladder. BBA 689: 627 (1982).

    Article  Google Scholar 

  45. A. N. Charney, P. I. Silva, A. Besarab, F. H. Epstein, Separate effects of aldosterone, DOCA and methylprednisolone on renal NaK ATPase. Am. J. Physiol. 227: 345 (1974).

    PubMed  CAS  Google Scholar 

  46. U. Schmidt, J. Schmid, H. Schmid, U. C. Dubach, NaK ATPase. A possible target of aldosterone. J. Clin. Invest. 55: 655 (1975).

    Article  PubMed  CAS  Google Scholar 

  47. J. S. Handler, A. S. Preston, M. Perkins, M. Matsumura, The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells. Ann. NY Acad. Sci. 372: 442 (1981).

    Article  PubMed  CAS  Google Scholar 

  48. J. P. Johnson, D. C. Jones, Hormonal regulation of NaK ATPase in cultured epithelial cells. Kidney Int. 25: 330 (1984).

    Google Scholar 

  49. K. Geering, M. Girardet, C. Bron, J.-P. Krahbenbuhl, B. C. Rossier, Hormonal regulation of NaK ATPase biosynthesis in the toad bladder. J. Biol. Chem. 257: 10338 (1982).

    PubMed  CAS  Google Scholar 

  50. C. S. Park, I. S. Edelman, Effect of aldosterone on abundance and phosphorylation kinetics of NaK ATPase of toad urinary bladder. Am. J. Physiol. 246:F5O9 (1984).

    Google Scholar 

  51. C. S. Park, I. S. Edelman, Dual action of aldosterone on toad bladder: Na permeability and Na pump. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol 15): F517 (1984).

    PubMed  CAS  Google Scholar 

  52. K. J. Petty, J. P. Kokko, D. Marver, Regulation of rabbit CCT NaK ATPase activity by aldosterone. J. Clin. Invest. 68: 1514 (1981).

    Article  PubMed  CAS  Google Scholar 

  53. A. Doucet, A. I. Katz, Short-term effect of aldosterone on NaK ATPase in single nephron segments. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol 10): F273 (1981).

    PubMed  CAS  Google Scholar 

  54. G. El Mernissi, A. Doucet, Short-term effect of aldosterone on renal Na transport and tubular NaK ATPase in the rat. Pflugers Arch. 399: 139 (1983).

    Article  PubMed  Google Scholar 

  55. G. El Mernissi, A. Doucet, Short-term effects of aldosterone and dexamethasone on NaK ATPase along the rabbit nephron. Pflugers Arch. 399: 147 (1983).

    Article  PubMed  Google Scholar 

  56. S. K. Mujais, M. A. Checkal, S. K. Lee, A. I. Katz, Relationships between adrenal steroids and renal NaK ATPase. Pflugers Arch. 402: 48 (1984).

    Article  PubMed  CAS  Google Scholar 

  57. J. B. Wade. R. G. O’Neil, J. L. Pryor, E. L. Boulpaep, Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81: 439 (1979).

    Article  PubMed  CAS  Google Scholar 

  58. L. C. Garg, M. A. Knepper, M. G. Burg, Mineralocorticoíd effects on NaK ATPase in individual nephron segments. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol 9): F536 (1981).

    PubMed  CAS  Google Scholar 

  59. E. El Mernissi, D. Chabardes, A. Doucet, A. Hus-Citharel, M. Imbert-Teboul, F. LeBouffant, M. Montegut, S. Siaume, F. Morel, Changes in tubular basolateral membrane markers after chronic DOCA treatment. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol 14): F100 (1983).

    PubMed  CAS  Google Scholar 

  60. S. K. Mujais, M. A. Checkal, W. J. Jones, J. P. Hayslett, A. I. Katz, Regulation of renal NaK ATPase in the rat. J. Clin. Invest. 73: 13 (1984).

    Article  PubMed  CAS  Google Scholar 

  61. O. Hansen, J. Jensen, J. G. Norby, P. Ottolenghi, A new proposal regarding the subunit composition of (Na+ + K+) ATPase. Nature 280: 410 (1979).

    Article  PubMed  CAS  Google Scholar 

  62. T. D. Hexum, The effect of catecholamines on transport (Na, K) adenosine triphosphatase. Biochem. Pharmacol. 26: 1221 (1977).

    Article  PubMed  CAS  Google Scholar 

  63. R. B. Lingham, A. K. Sen, Regulation of rat brain (Na+ + K+)ATPase activity by cyclic AMP. Biochem. Biophys. Acta. 688: 475 (1982).

    Article  PubMed  CAS  Google Scholar 

  64. J. M. Braughler, C. N. Corder, Reversible inactivation of purified (Na+ + K+)-ATPase from human renal tissue by cyclic AMP-dependent protein kinase. Biochim. Biophys. Acta. 524: 455 (1978).

    PubMed  CAS  Google Scholar 

  65. K. P. Wheeler, R. Whittam, The involvement of phosphatidylserine in adenosine triphosphatase activity of the sodium pump. J. Physiol. 207: 303 (1970).

    PubMed  CAS  Google Scholar 

  66. P. M. Rosoff, L. C. Cantley, Increasing the intracellular Na+ concentration induces differentiation in a pre-B lymphocyte cell line. Proc. Natl. Acad. Sci. USA 80: 7547 (1983).

    Article  PubMed  CAS  Google Scholar 

  67. R. L. Smith, I. G. Macara, R. Levenson, D. Housman, L. Cantley, Evidence that a Na+/Ca2+ antiport system regulates murine erythroleukemia cell differentiation. J. Biol. Chem. 257: 773 (1982).

    PubMed  CAS  Google Scholar 

  68. P. M. Rosoff, L. F. Stein, L. C. Cantley, Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange. J. Biol. Chem. 259: 7056 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Marver, D. (1986). Models of Aldosterone Action on Sodium Transport: Emerging Concepts. In: Chrousos, G.P., Loriaux, D.L., Lipsett, M.B. (eds) Steroid Hormone Resistance. Advances in Experimental Medicine and Biology, vol 196. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5101-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5101-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5103-0

  • Online ISBN: 978-1-4684-5101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics