Skip to main content

Metabolic Responses of Embryonic Sea Birds to Temperature

  • Chapter
Seabird Energetics

Abstract

Surprisingly little information is available concerning metabolic responses of embryonic sea birds to temperature, despite the challenging thermal conditions under which many species nest. Knowledge of such responses should be useful in tracing fully the ontogeny of thermoregulation in these animals and in defining the thermal limits for development. It should also allow identification of acute effects of variations in egg temperature and any compensatory mechanisms that serve to damp these effects. Development of a comprehensive understanding of these topics for sea birds is a challenging task, for these animals comprise a group defined by habitat preference rather than taxonomic affinity. It easily includes more than half a dozen orders if it is broadly defined to include littoral as well as near-shore and pelagic birds, and transients as well as species that are resident in marine situations. This diverse group includes altricial, semi-altricial, semi-precocial, and precocial species, with all the physiological diversity that this implies. Despite these difficulties it seems worthwhile, within the framework of this symposium on the energetics of sea birds, to assemble information on embryonic responses to temperature so that we may begin to formulate meaningful questions for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afton, A. D., 1979, Incubation temperatures of the Northern Shoveler, Can. J. Zool., 57: 1052.

    Article  Google Scholar 

  • Barnes, W. S., and Hasson, S. M., 1983, Respiratory capacity of chick red and white muscle, Comp. Biochem. Physiol., 75A: 491.

    Article  CAS  Google Scholar 

  • Barrett, R. T., 1980, Temperature of Kittiwake Rissa tridactyla eggs and nests during incubation, Orrais Scand., 11: 50.

    Article  Google Scholar 

  • Bartholomew, G. A. Jr., and Dawson, W. R., 1952, Body temperatures in nestling Western Gulls, Condor, 54: 58.

    Article  Google Scholar 

  • Bartholomew, G. A., and Dawson, W. R., 1979, Thermoregulatory behavior during incubation in Heermann’s Gulls, Physiol. Zool. 52: 422.

    Google Scholar 

  • Beck, J. R., and Brown, D. W., 1972, The biology of Wilson’s Storm Petrel, Oceanites oceanicus (Kuhl), at Signy Island, South Orkney Islands, Br. Antarctic Survey Sci. Rep, 6: 911.

    Google Scholar 

  • Bennett, A. F., and Dawson, W. R., 1979, Physiological responses of embryonic Heermann’s Gulls to temperature, Physiol. Zool., 52: 413.

    Google Scholar 

  • Bennett, A. F., Dawson, W. R., and Putnam, R. W., 1981, Thermal environment and tolerance of embryonic Western Gulls, Physiol. Zool. 54: 146.

    Google Scholar 

  • Boersma, P. D., and Wheelwright, N. T., 1979, Egg neglect in the Procellariiformes: reproductive adaptations in the Fork-tailed Storm Petrel, Condor, 81: 57.

    Article  Google Scholar 

  • Boersma, P. D., Wheelwright, N. T., Nerini, M. K., and Wheelwright, E. S., 1980, The breeding biology of the Fork-tailed Storm-petrel (Oceanodroma furcata), Auk, 97: 268.

    Google Scholar 

  • Cesana, G., 1911–12, Interno al coefficiente termico del cuore embrionale di polio nei primi giorni dello sviluppo, Arch. Fisiol., 10:193.

    Google Scholar 

  • Cohn, A. E., 1928, Physiology ontogeny. A. Chicken embryos. XIII. The temperature characteristic for the contraction rate of the whole heart, J. Gen. Physiol., 11: 369.

    Article  PubMed  CAS  Google Scholar 

  • Dawes, C. M., 1981, The effects of cooling the egg on the respiratory movements of the hatching fowl, Gallus R. domesticus), with a note on vocalization, Comp. Biochem. Physiol., 68A: 399.

    Article  Google Scholar 

  • Dawson, W. R., 1967, Interspecific variation in physiological responses of lizards to temperature, in: “Lizard Ecology,” W. W. Milstead, ed., University of Missouri Press, Columbia.

    Google Scholar 

  • Dawson, W. R., and Bennett, A. F., 1980, Metabolism and thermoregulation in hatchling Western Gulls, Condor, 82: 103.

    Article  Google Scholar 

  • Dawson, W. R., and Bennett, A. F., 1981, Field and laboratory studies of the thermal relations of hatchling Western Gulls, Physiol. Zool., 54: 155.

    Google Scholar 

  • Dawson, W. R., Bennett, A. F., and Hudson, J. W., 1976, Metabolism and thermoregulation in hatchling Ring-billed Gulls, Condor, 78: 49.

    Article  Google Scholar 

  • Dawson, W. R., and Hudson, J. W., 1970, Birds, in: “Comparative Physiology of Thermoregulation,” G. C. Whittow, ed., Academic Press, New York.

    Google Scholar 

  • Dawson, W. R., Hudson, J. W., and Hill, R. W., 1972, Temperature regulation in newly hatched Laughing Gulls (Larus atricilla), Condor, 74: 177.

    Article  Google Scholar 

  • Decuypere, E., Nouwen, E. J., Kühn, E. R., Geers, R., and Michels, H., 1978, Heat production and serum concentration of thyroid hormones in the chick embryo at the end of the incubation period, I.R.C.S. Med. Sci.: Dev. Biol. Med.; Endocr. Syst.; Met. Nutr.; Physiol; Rep. Obst. Gyn., 6: 336.

    CAS  Google Scholar 

  • Drent, R., 1967, “Functional Aspects of Incubation in the Herring Gull,” E. J. Brill, Leiden.

    Google Scholar 

  • Drent, R., 1970, Functional aspects of incubation in the Herring Gull, Behay. Suppl., 17: 1.

    Google Scholar 

  • Drent, R., 1972, Adaptive aspects of the physiology of incubation, in: “Proceedings of the XVth International Ornithological Congress,” K. H. Voous, ed., E. J. Brill, Leiden.

    Google Scholar 

  • Drent, R., 1973, The natural history of incubation, in: “Breeding Biology of Birds,” D. S. Farner, ed., National Academy of Sciences, Washington, D. C.

    Google Scholar 

  • Drent, R., 1975, Incubation, in: “Avian Biology, Vol. 5,” D. S. Farner and J. R. King, eds., Academic Press, New York.

    Google Scholar 

  • Freeman, B. M., 1964, The emergence of the homeothermic metabolic response in the fowl (Gallus domesticus), Comp. Biochem. Physiol., 13: 413.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, B. M., 1970, Thermoregulatory mechanisms of the neonate fowl, Comp. Biochem. Physiol., 33: 219.

    Article  CAS  Google Scholar 

  • Freeman, B. M., 1971, Non-shivering thermogenesis in birds, in: “Nonshivering Thermogenesis,” L. Jansky, ed., Academia, Prague.

    Google Scholar 

  • Freeman, B. M., 1977, Lipolysis and its significance in the response to cold of the neonatal fowl, Gallus domesticus, J. Therm. Biol., 2: 145.

    Article  CAS  Google Scholar 

  • Freeman, B. M., and Vince, M. A., 1974, “Development of the Avian Embryo,” Wiley and Sons, New York.

    Google Scholar 

  • Grant, G. S., 1982, Avian incubation, egg temperature, nest humidity and behavioral thermoregulation in a hot environment, Ornithol. Monogr., 30.

    Google Scholar 

  • Grieff, D., 1952, The metabolic interactions of intracellular parasites and embryonate eggs, Ann. New York Acad. Sci., 55: 254.

    Article  Google Scholar 

  • Hasselbalch, K. A., 1900, Ueber den respiratorischen Stoffwechsel des Huhnerembryos, Skand. Arch. Physiol., 10: 353.

    Google Scholar 

  • Howell, T. R., Araya, B., and Millie, W. R., 1974, Breeding biology of the Gray Gull, Larus modestus, Univ. Calif. Publ. Zool., 104: 1.

    Google Scholar 

  • Howell, T. R., 1979, Breeding biology of the Egyptian Plover, Pluvianus egyptius (fives: Glareolidae), Univ. Calif. Publ. Zool., 113: 1.

    Google Scholar 

  • Hoyt, D. F., and Rahn, H., 1980, Respiration of avian embryosa comparative analysis, Resp. Physiol., 39: 255.

    Article  CAS  Google Scholar 

  • Hoyt, D. F., Vleck, D., and Vleck, C. M., 1978, Metabolism of avian embryos: ontogeny and temperature effects in the Ostrich, Condor, 80: 265.

    Article  Google Scholar 

  • Inukai, T., 1925, Uber den Einfluss der Temperature auf die Pulsationzahl bei den Amphibienlarven and Vogelembryonen, Jap. J. Zool., 1: 67.

    Google Scholar 

  • Koskimies, J., and Lahti, L., 1964, Cold-hardiness of the newly hatched young in relation to ecology and distribution in ten species of European ducks, Auk, 81: 281.

    Google Scholar 

  • Kühn, E. R., Decuypere, E., Colen, L. M., and Michels, H., 1982, Posthatch growth and development of a circadian rhythm for thyroid hormones in chicks incubated at different temperatures, Poultry Sci., 61: 540.

    Google Scholar 

  • Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13.

    Article  Google Scholar 

  • Lind, H., 1961, “Studies on the Behaviour of the Black-tailed Godwit Mimosa limosa) (L.), Meddelelse fra Naturfredningsradets reservatudvalg Nr. 66, Munksgaard, Copenhagen.

    Google Scholar 

  • Lundy, 1969, A review of the effects of temperature, humidity„ turning and gaseous environment in the incubator on the hatchability of the hen’s egg, in: “The Fertility and Hatchability of the Hen’s Egg,” T. C. Carter and B. M. Freeman, eds., Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Marsh, R. L., and Wickler, S. J., 1982, The role of muscle development in the transition to endothermy in nestling Bank Swallows Riparia riparia, J. Comp. Physiol., 149: 99.

    CAS  Google Scholar 

  • Matthews, G. V. T., 1954, Some aspects of incubation in the Manx Shearwater Procellaria puffinus, with particular reference to chilling resistance in the embryo, Ibis, 96: 432.

    Article  Google Scholar 

  • Mes, R., Schuckard, R., and Wattel, J., 1978, Visdieven Sterna hirundo zocken koelte, Limosa, 51: 64.

    Google Scholar 

  • Murrish, D. E., and Guard, C. L., 1973, Sympathetic control of nonshivering thermogenesis in South Polar Skua chicks, Antarctic J. U. S., 8: 197.

    Google Scholar 

  • Nair, G., and Dawes, C. M., 1980, The effects of cooling the egg on the respiratory movements of the hatching quail (Coturnix c. japonica), Comp. Biochem. Physiol., 67A: 587.

    Article  Google Scholar 

  • Paff, G. H., Boucek, R. J., Nieman, R. E., and Deichmann, W. B., 1963 The embryonic heart subjected to radar, Anat. Rec., 147: 379.

    Article  PubMed  CAS  Google Scholar 

  • Palokangas, R., and Hissa, R., 1971, Thermoregulation in young Black-headed Gull (Larus ridibundus), Comp. Biochem. Physiol. 38A: 743.

    Article  CAS  Google Scholar 

  • Parpart, E. R., and Glaser, O., 1930, Temperature and heart rate in chick embryos, J. Exp. Biol., 7: 143.

    Google Scholar 

  • Patterson, I. J., 1965, Timing and spacing of broods in the Black-headed Gull Larus ridibundus, Ibis, 107: 433.

    Article  Google Scholar 

  • Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982, Respiratory gas exchange and growth of Bonin Petrel embryos, Physiol. Zool., 55: 162.

    Google Scholar 

  • Purdue, J. R. 1976, Thermal environment of the nest and related parental behavior in Snowy Plovers, Charadrius alexandrinus, Condor, 78: 180.

    Article  Google Scholar 

  • Rahn, H., Paganelli, C. V., and Ar, A., 1974, The avian egg: air cell gas tension, metabolism and incubation time, Respir. Physiol., 22:297.

    Google Scholar 

  • Roberts, B., 1940, The life cycle of Wilson’s Petrel Oceanites oceanicus (Kuhl), British Graham Land Expedition: 1934–37, Sci. Rep., 1: 141.

    Google Scholar 

  • Romanoff, A. L., 1960, “The Avian Embryo,” Macmillan, New York.

    Google Scholar 

  • Romanoff, A. L., 1972, “Pathogenesis of the Avian Embryo,” Wiley-Interscience, New York.

    Google Scholar 

  • Romanoff, A. L., and Sochen, M., 1936, Thermal effect on the rate and duration of the embryonic heart beat of Gallus domesticus, Anat. Rec., 65: 59.

    Article  Google Scholar 

  • Russell, S. M., 1969, Regulation of egg temperatures by incubating White-winged Doves, in: “Physiological Systems in Semiarid Environments,” C. C. Hoff and M. L. Riedesel, eds., University of New Mexico Press, Albuquerque.

    Google Scholar 

  • Scholander, P. F., Flagg, W., Walters, V., and Irving, L., 1953, Climatic adaptation in arctic and tropical poikilotherms, Physiol. Zool., 26: 67.

    Google Scholar 

  • Skutch, A. F., 1957, The incubation period of birds, Ibis, 99: 69.

    Article  Google Scholar 

  • Skutch, A. F., 1962, The constancy of incubation, Wilson Bull., 74: 115.

    Google Scholar 

  • Vleck, C. M., Hoyt, D. F., and Vleck, D., 1979, Metabolism of avian embryos: patterns in altricial and precocial birds, Physiol. Zool., 52: 363.

    Google Scholar 

  • Vleck, C. M., and Kenagy, G. J., 1980, Embryonic metabolism of the Fork-tailed Storm Petrel: physiological patterns during prolonged and interrupted incubation, Physiol. Zool., 53: 32.

    Google Scholar 

  • Vleck, C. M., Vleck, D., and Hoyt, D. F., 1980a, Patterns of metabolism and growth in avian embryos, Am. Zool., 20: 405.

    Google Scholar 

  • Vleck, D., and Vleck, C. M., and Hoyt, D. F., 1980b, Metabolism of avian embryos: ontogeny of oxygen consumption in the Rhea and Emu, Physiol. Zool, 53: 125.

    Google Scholar 

  • Vleck, D., Vleck, C. M., and Seymour, R. S., 1984, Energetics of embryonic development in the megapode birds, Mallee Fowl (Leipoa ocellata) and Brush Turkey (Alectura lathami), Physiol. Zool., in press.

    Google Scholar 

  • Walsberg, G. E., and Voss-Roberts, K. A., 1983, Incubation in desert-nesting doves: mechanisms for egg cooling, Physiol. Zool., 56: 85.

    Google Scholar 

  • White, F. N., and Kenney, J. L., 1974, Avian incubation, Science, 186: 107.

    Article  PubMed  CAS  Google Scholar 

  • Wheelwright, N. T., and Boersma, P. D., 1979, Egg chilling and the thermal environment of the Fork-tailed Storm Petrel (Oceanodroma furcata) nest. Physiol. Zool., 52: 231.

    Google Scholar 

  • Whittow, G. C., 1984, Physiological ecology of incubation in tropical seabirds, Stud. Avian Biol., No. 8, in press.

    Google Scholar 

  • Wilbur, H. M., 1969, The breeding biology of Leach’s Petrel, Oceanodroma leucorhoa, Auk, 86: 433.

    Google Scholar 

  • Williams, J. B., and Ricklefs, R. E., 1984, Egg temperature and embryo metabolism in some high-latitude procellariiform birds, Physiol. Zool., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Dawson, W.R. (1984). Metabolic Responses of Embryonic Sea Birds to Temperature. In: Whittow, G.C., Rahn, H. (eds) Seabird Energetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4859-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4859-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4861-0

  • Online ISBN: 978-1-4684-4859-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics