Skip to main content

Stimulus Selection and Behavioral Inhibition

  • Chapter
Drugs, Neurotransmitters, and Behavior

Part of the book series: Handbook of Psychopharmacology ((HBKPS))

Abstract

One important area of applied psychology is devoted to the development of techniques for eliminating or weakening some responses so that they may be replaced with others. The psychopharmacologist has become involved in the search for drugs that affect response elimination and the neurochemical mechanisms that control inhibition. The term “behavioral inhibition” has been used as a description and as an explanation in psychopharmacology, and some of these uses will be discussed in later sections of this chapter. First, I will discuss some manifestations of behavioral inhibition and consider the possibility that different neurochemical mechanisms may mediate different sorts of inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andén, N. E., Butcher, S. G., Corrodi, H., Fuxe, K., and Ungerstedt, U., 1970, Receptor activity and turnover of dopamine and noradrenaline after neuroleptics, Eur. J. Pharmacol 11:303–314.

    Article  PubMed  Google Scholar 

  • Andén, N. E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67:313–326.

    Article  Google Scholar 

  • Anger, D., 1956, The dependence of interresponse times upon the relative reinforcement of different interresponse times, J. Exp. Psychol. 52:145–161.

    Article  PubMed  Google Scholar 

  • Avis, H. H., and Pert, A., 1974, A comparison of the effects of muscarinic and nicotinic anticholinergic drugs on habituation and fear conditioning in rats, Psychopharmacologia 34:209–222.

    Article  PubMed  Google Scholar 

  • Berger, B. D., and Stein, L., 1969, An analysis of the learning deficits produced by scopolamine, Psychopharmacologia 14:271–283.

    Article  PubMed  Google Scholar 

  • Bernheimer, H., Birkmayer, W., and Hornykiewicz, O., 1961, Vertielung des 5-Hydroxytryptamins (serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinson-Syndrom, Klin. Wochenschr. 39:1056–1059.

    Article  PubMed  Google Scholar 

  • Bignami, G., and Rosic, N., 1970, The nature of disinhibitory phenomena caused by central cholinergic (muscarinic blockade), in: Proceedings of the VIIth International Congress of the Collegium Internationale Neuropsychologicum, Prague.

    Google Scholar 

  • Bliss, E. J., Ailion, J., and Zwanziger, J., 1968, Metabolism of norepinephrine, serotonin, and dopamine in rat brain with stress, J. Pharmacol. Exp. Ther. 164:122–131.

    PubMed  Google Scholar 

  • Boren, J. J., and Navarro, A. P., 1959, The action of atropine, benactyzine and scopolamine upon fixed interval and fixed ratio behavior, J. Exp. Anal. Behav. 2:107–115.

    Article  PubMed  Google Scholar 

  • Bradley, P. B., and Elkes, J., 1953, The effect of atropine, hyoscyamine, physostigmine and neostigmine on the electrical activity of the conscious cat, J. Physiol. (London) 120:13.

    Google Scholar 

  • Brady, J. V., 1959, Differential drug effects upon aversive and appetitive components of a behavioral repertoire, in: Neuro-psychopharmacology, Vol. 1 (P. B. Bradley, P. Wencker, and C. Radouco-Thomas, eds.), pp. 275–281, Elsevier, New York.

    Google Scholar 

  • Bremer, F., 1961, Neurophysiological mechanisms in cerebral arousal, in: The Nature of Sleep (G. E. W. Wolstenholme and M. O’Conner, eds.), pp. 30–56, Little, Brown and Company, Boston.

    Google Scholar 

  • Brimer, C. J., 1972, Disinhibition of an operant response, in: Inhibition and Learning (R. A. Boakes and M. S. Halliday, eds.), pp. 205–227, Academic Press, London.

    Google Scholar 

  • Brodie, B. B., and Shore, P. A., 1957, A concept for a role of serotonin and norepinephrine as chemical mediators in the brain, Ann. N. Y. Acad. Sci. 66:631–642.

    Article  PubMed  Google Scholar 

  • Brown, K., and Warburton, D. M., 1971, Attenuation of stimulus sensitivity by scopolamine, Psychonomic Sci. 22:297–298.

    Google Scholar 

  • Brunton, T. L., 1883, On the nature of inhibition and the action of drugs upon it, Nature (London) 27:419–422.

    Article  Google Scholar 

  • Bures, J., Buresova, O., Bohdanecky, Z., and Weiss, T., 1962, Physostigmine-induced hippocampal theta activity and learning in rats, Psychopharmacologia 3:254–263.

    Article  PubMed  Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B., and Lindgrist, M., 1966, Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67:481–497.

    Article  PubMed  Google Scholar 

  • Carlton, P., 1963, Cholinergic mechanisms in the control of behavior by the brain, Psychol. Rev. 70:19–39.

    Article  PubMed  Google Scholar 

  • Carlton, P. L., 1968, Brain acetylcholine and habituation, Progr. Brain Res. 28:48–60.

    Article  Google Scholar 

  • Carlton, P. L., and Vogel, J. R., 1965, Studies of the amnesic properties of scopolamine, Psychonomic Sci. 3:261–262.

    Google Scholar 

  • Chase, T. N., Katz, R. I., and Kopin, I. J., 1970, Effect of diazepam on fate of intracisternally injected serotonin-C14. Neuropharmacology 9:103–108.

    Article  PubMed  Google Scholar 

  • Cladel, C. E., Cho, M. H., and McDonald, R. D., 1966, Effect of amphetamine and catecholamines on startle response and general motor activity of albino rats, Nature (London) 210:864–865.

    Article  Google Scholar 

  • Clark, F. C., and Steele, B. J., 1966, Effects of d-amphetamine on performance under a multiple schedule in the rat, Psychopharmacologia 9:157–169.

    Article  PubMed  Google Scholar 

  • Corrodi, H., Fuxe, R. I., Lidbrink, P., and Olson, L., 1971, Minor tranquilizers, stress, and central catecholamine neurons, Brain Res. 29:1–16.

    Article  PubMed  Google Scholar 

  • Cox, T., and Tye, N., 1973, Effects of physostigmine on the acquisition of a position discrimination in rats, Neuropharmacology 12:477–484.

    Article  PubMed  Google Scholar 

  • Cox, T., and Tye, N., 1974, Effects of physostigmine on the maintenance of discrimination behavior in rats, Neuropharmacology 13:205–210.

    Article  PubMed  Google Scholar 

  • Crow, T. J., 1973, Catecholamine-containing neurons and electrical self-stimulation. 2. A theoretical interpretation and some psychiatric implications, Psychol. Med. 3:66–73.

    Article  PubMed  Google Scholar 

  • Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monamine-containing neurons in the central nervous system. 1. Demonstration of monamines in the cell bodies of the brain stem neurons, Acta Physiol. Scand. 62:Suppl. 232.

    Google Scholar 

  • Douglas, R. J., 1966, Cues for spontaneous alternation, J. Comp. Physiol. Psychol. 62:171–183.

    Article  PubMed  Google Scholar 

  • Douglas, R. J., 1967, The hippocampus and behavior, Psychol. Bull. 67:416–442.

    Article  PubMed  Google Scholar 

  • Douglas, R. J., 1972, Pavlovian conditioning and the brain, in: Inhibition and Learning (R. A. Boakes and M. S. Halliday, eds.), pp. 529–553, Academic Press, London.

    Google Scholar 

  • Douglas, R. J., and Isaacson, R. L., 1966a, Spontaneous alternation and scopolamine, Psychonomic Sci. 4:283–284.

    Google Scholar 

  • Douglas, R. J., and Pribram, K. H., 1966b, Learning and limbic lesions, Neuropsychologia 4:197–220.

    Article  Google Scholar 

  • Egan, J. P., Greenberg, G. I., and Schulman, A. J., 1961, Operating characteristic, signal detectability and the method of free response, J. Acoust. Soc. Am. 33:993–1007.

    Article  Google Scholar 

  • Endroczi, E., Hartmann, G., and Lissak, K., 1963, Effect of intracerebrally administered cholinergic and adrenergic drugs on neocortical and archicortical electrical activity, Acta. Physiol. Acad. Sci. Hung. 24:200–209.

    Google Scholar 

  • Estes, W. K., and Skinner, B. F., 1941, Some quantitative properties of anxiety, J. Exp. Psychol. 29:390–400.

    Article  Google Scholar 

  • Evans, H. L., and Patton, R. A., 1968, Scopolamine effects on a one-trial test of fear conditioning, Psychonomic. Sci. 11:229–230.

    Google Scholar 

  • Evans, H. L., and Patton, R. A., 1970, Scopolamine effects on conditional suppression, Psychopharmacologia 17:1–13.

    Article  PubMed  Google Scholar 

  • Feigley, D. A., and Hamilton, L. W., 1971, Response to novel environment following septal lesions or cholinergic blockade in rats, J. Camp. Physiol. Psychol. 76:496–504.

    Article  Google Scholar 

  • Ferster, C. B., and Skinner, B. F., 1957, Schedules of Reinforcement, Appleton-Century-Crofts, New York.

    Book  Google Scholar 

  • Funderburk, W., and Case, T., 1951, The effect of atropine on cortical potentials, Electroencephalogr. Clin. Neurophysiol. 3:213–223.

    Article  PubMed  Google Scholar 

  • Geller, J., and Seifter, J., 1960, The effects of meprobamate, barbituates, d-amphetamine and promazine on experimentally induced conflict in the rat, Psychopharmacologia 1:482–492.

    Article  Google Scholar 

  • Geller, J., Kulak, J. T., and Seifter, J., 1962, The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination, Psychopharmacologia 3:374–385.

    Article  PubMed  Google Scholar 

  • Glanzer, M., 1953, Stimulus satiation. An explanation of spontaneous alternation and related phenomena, Psychol, Rev. 60:257–268.

    Article  Google Scholar 

  • Grossman, S. P., 1964, Effects of chemical stimulation of the septal nuclei on motivation, J. Comp. Physiol. Psychol. 58:194–200.

    Article  PubMed  Google Scholar 

  • Hearst, E., 1959, Effects of scopolamine on discriminated responding in the rat, J. Pharmacol. Exp. Ther. 126:349–358.

    PubMed  Google Scholar 

  • Hearst, E., 1972, Some persistent problems in the analysis of conditional inhibition, in: Inhibition and Learning (R. A. Boakes and M. S. Halliday, eds.), pp. 5–39, Academic Press, London.

    Google Scholar 

  • Hearst, E., Besley, S., and Farthing, G. W., 1970, Inhibition and the stimulant control of operant behavior, J. Exp. Anal. Behav. 14:373–409.

    Article  PubMed  Google Scholar 

  • Heise, G. A., 1964, Animal techniques for evaluating anorexigenic agents, in: Animal and Clinical Techniques in Drug Evaluations (J. H. Nodine and P. E. Seigler, eds.), pp. 279–282, Year Book Medical Publishers, Chicago.

    Google Scholar 

  • Heise, G. A., 1975, Discrete trial analysis of drug action, Fed. Proc. 34:1898–1903.

    PubMed  Google Scholar 

  • Heise, G. A., and Lilie, N. L., 1970, Effects of scopolamine, atropine and amphetamine on internal and external control of responding and nonreinforced trials, Psychopharmacologia 18:38–49.

    Article  PubMed  Google Scholar 

  • Heise, G. A., Keller, C., Khavari, K. A., and Laughlin, N., 1969, Learning of discrete trial, go-no go alternation patterns by the rat, J. Exp. Anal. Behav. 12:609–622.

    Article  PubMed  Google Scholar 

  • Heise, G. A., Laughlin, N., and Keller, G. A., 1970, Behavioral analysis of reinforcement withdrawal, Psychopharmacologia 16:345–368.

    Article  PubMed  Google Scholar 

  • Herblin, W. F., 1968, Extinction reversal by scopolamine, Psychonomic Sci. 13:43–44.

    Google Scholar 

  • Herrnstein, R. J., 1958, Effects of scopolamine on a multiple schedule, J. Exp. Anal. Behav. 1:351–358.

    Article  PubMed  Google Scholar 

  • Hillarp, N. A., Fuxe, K., and Dahlstrom, A., 1966, Demonstration and mapping of central neurons containing dopamine, noradrenaline and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev. 18:727–741.

    PubMed  Google Scholar 

  • Kanai, T., and Szerb, J. C., 1965, Mesencephalic reticular activating system and cortical acetycholine output, Nature (London) 205:81–88.

    Article  Google Scholar 

  • Kelleher, R. T., and Morse, W. H., 1964, Escape behavior and punished behavior, Fed. Proc. 23:808–817.

    PubMed  Google Scholar 

  • Kelleher, R. T., and Morse, W. H., 1968, Determinants of the specificity of behavioral effects of drugs, Ergeb. Physiol. 60:1–56.

    PubMed  Google Scholar 

  • Keller, F. S., and Schoenfeld, W. N., 1950, Principles of Psychology, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Kelly, P. H., Rolls, E. T., and Shaw, S. G., 1974, Functions of catecholamines in brain stimulation reward, Brain Res. 66:363–364.

    Article  Google Scholar 

  • Kelly, P. H., Seviour, P. W., and Iversen, S. D., 1975, Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum, Brain Res. 94:507–522.

    Article  PubMed  Google Scholar 

  • Kimble, D. P., 1968, Hippocampus and internal inhibition, Psychol. Bull. 70:285–295.

    Article  PubMed  Google Scholar 

  • Kimble, D. P., 1969, Possible inhibitory functions of the hippocampus, Neuropsychologia 7:235–244.

    Article  Google Scholar 

  • Kimble, G. A., 1961, Conditioning and Learning, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Kirkby, R. J., Bell, D. S., and Preston, A. D., 1972, Effects of methylamphetamine on stereotyped behavior, activity, startle and orienting responses, Psychopharmacologia 25:41–48.

    Article  PubMed  Google Scholar 

  • Konorski, J., 1948, Conditioned Reflexes and Neuron Organization, Cambridge University Press, Cambridge.

    Google Scholar 

  • Krnjevic, K., and Phillis, J. W., 1963a, Acetylcholine sensitive cells in the cerebral cortex, J. Physiol. (London) 166:296–327.

    Google Scholar 

  • Krnjevic, K., and Phillis, J. W., 1963b, Pharmacological properties of acetylcholinesensitive cells in the cerebral cortex, J. Physiol. (London) 166:328–350.

    Google Scholar 

  • Laties, V., and Weiss, B., 1966, Influence of drugs on behavior controlled by internal and external stimuli, J. Pharmacol. Exp. Ther. 152:388–396.

    PubMed  Google Scholar 

  • Leaton, R. N., 1968, Effects of scopolamine on exploratory motivated behavior, J. Comp. Physiol. Psychol. 66:524–527.

    Article  PubMed  Google Scholar 

  • Lidbrink, P., Corrodi, H., Fuxe, K., and Olsen, L., 1973, The effects of benzodiazepines, meprobamate and barbituates on central monoamine neurons, in: The Benzodiazepines (S. Garattini, E. Mussini, and L. O. Randall, eds.), pp. 203–223, Raven Press, New York.

    Google Scholar 

  • Mabry, P. D., and Campbell, B. A., 1973, Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49:381–391.

    Article  PubMed  Google Scholar 

  • Margules, D. L., and Stein, L., 1967, Neuroleptics vs. tranquilizers. Evidence from animal behavior studies of mode and site of action, Neuropsychopharmacology (A. A. Brill, J. O. Cole, P. Deniker, P. H. Hippius, and P. B. Bradley, eds.), pp. 108–120, Excerpta Medica Foundation, New York.

    Google Scholar 

  • Margules, D. L., and Stein, L., 1968, Increase of “antianxiety” activity and tolerance of behavioral depression during chronic administration of oxazepam, Psychopharmacologia 13:74–80.

    Article  PubMed  Google Scholar 

  • McMillan, D. E., 1969, Effects of d-Amphetamine on performance under several parameters of multiple fixed-ratio fixed interval schedules, J. Pharmacol. Exp. Ther. 167:26–33.

    PubMed  Google Scholar 

  • Meyers, B., 1965, Some effects of scopolamine on a passive avoidance response in rats, Psychopharmacologia 13:74–80.

    Google Scholar 

  • Meyers, B., and Domino, E. F., 1964, The effect of cholinergic blocking drugs on spontaneous alternation in rats, Arch. Int. Pharmcodyn. Ther., 150:525–529.

    Google Scholar 

  • Michelson, M. J., 1961, Pharmacological evidence of the role of acetylcholine in the higher nervous activity of man and animals, Act. Nerv. Super. 3:2.

    Google Scholar 

  • Miczek, K. A., 1973a, Effects of scopolamine, amphetamine and benzodiazepines on conditional suppression, Pharmacol. Biochem. Behav. 1:401–411.

    Article  PubMed  Google Scholar 

  • Miczek, K. A., 1973b, Effects of scopolamine, amphetamine, and chlordiazepoxide on punishment, Psychopharmacologia 28:373–389.

    Article  PubMed  Google Scholar 

  • Millenson, J. R., and Leslie, J., 1974, The conditioned emotional response (CER) as a baseline for the study of anti-anxiety drugs, Neuropharmacology 13:1–9.

    Article  PubMed  Google Scholar 

  • Mishkin, M., 1964, Perseveration of central sets after frontal lesions in monkeys, in: The Frontal Granular Cortex and behavior (J. M. Warren and K. Akert, eds.), pp. 219–237, McGraw-Hill, New York.

    Google Scholar 

  • Mowrer, O. H., 1960, Learning Theory and behavior, Wiley, New York.

    Book  Google Scholar 

  • Nolon, N. A., and Parkes, M. W 1973, The effects of benzodiazepines on the behaviour of mice on a hole board, Psychopharmacologia 29:277–288.

    Article  Google Scholar 

  • Oishi, H., Iwahara, D., Yang, Kwo-Man, and Yogi, A., 1972, Effects of chlordiazepoxide on passive avoidance responses in rats, Psychopharmacologia 23:373–385.

    Article  Google Scholar 

  • Olds, J. E., 1962, Hypothalamic substrates of reward, Physiol. Rev. 42:554–604.

    PubMed  Google Scholar 

  • Owens, J. E., 1960, The influence of dl-, d-and l-methamphetamine on a fixed ratio schedule, J. Exp. Anal. Behav. 3:293–310.

    Article  Google Scholar 

  • Pavlov, J. P., 1927, Conditioned reflexes, Oxford University Press, London.

    Google Scholar 

  • Payne, R., and Anderson, D. C., 1967, Scopolamine-produced changes in activity and in the startle response: implications for behavioral activation, Psychopharmacologia 12:83–90.

    Article  PubMed  Google Scholar 

  • Poschel, B. P. H., and Ninteman, F. W., 1971, Intracranial reward and the forebrain’s serotonergic mechanism: studies employing para-chlorophenylalanine and para-chloroamphetamine, Physiol. Behav. 7:39–46.

    Article  PubMed  Google Scholar 

  • Rescorla, R. A., 1969, Pavlovian conditioned inhibition, Psychol. Bull. 72:77–94.

    Article  Google Scholar 

  • Richelle, M., Xhenseval, B., Fontaine, O., and Thone, L., 1962, Action of chlordiazepoxide on two types of temporal conditioning in rats, Int. J. N europharmacol. 1:381–391.

    Google Scholar 

  • Robbins, T., and Iversen, S. D., 1973a, A dissociation of the effects of d-amphetamine on locomotor activity and exploration in rats, Psychopharmacologia 28:155–164.

    Article  PubMed  Google Scholar 

  • Robbins, T. W., and Iversen, S. D., 1973b, Amphetamine induced disruption of temporal discrimination by response disinhibition, Nature New Biol. 245:145–192.

    Google Scholar 

  • Ruch, T. C., Patton, H. D., Woodbury, J. W., and Towe, A. L., 1965, Neurophysiology, Saunders, Philadelphia.

    Google Scholar 

  • Rushton, R., and Steinberg, H., 1966, Combined effects of chlordiazepoxide and dexamphetamine on activity of rats in an unfamiliar environment, Nature (London) 211:1312–1313.

    Article  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system; neocortical, olfactory and subcortical projections, Brain 90:497–520.

    Article  PubMed  Google Scholar 

  • Skinner, B. F., 1938, The Behavior of Organisms, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Skinner, B. F., and Heron, W. T., 1937, Effects of caffeine and benzedrine upon conditioning and extinction, Psychol. Rev. 1:340–346.

    Google Scholar 

  • Spehlmann, R., 1969, Effect of acetylcholine and atropine upon excitation of cortical neurons by reticular stimulation, Fed. Proc. 28:795.

    Google Scholar 

  • Squire, L. R., 1969, Effects of pretrial and posttrial administration of cholinergic and anticholinergic drugs on spontaneous alternation, J. Comp. Physiol. Psychol. 1:69–75.

    Article  Google Scholar 

  • Stein, L., 1964, Self-stimulation of the brain and the central stimulant action of amphetamines, Fed. Proc. 23:836–849.

    PubMed  Google Scholar 

  • Stein, L., and Ray, O. S., 1960, Brain stimulation reward “thresholds” self-determined in the rat, Psychopharmacologia 1:251–256.

    Article  PubMed  Google Scholar 

  • Stein, L., and Wise, C. D., 1969, Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine, J. Comp. Physiol. Psychol. 67:189–198.

    Article  PubMed  Google Scholar 

  • Stein, L., and Wise, C. D., 1970, Behavioral Pharmacology of central stimulants, in: Principles of Psychopharmacology (W. G. Clark and J. del Giudice, eds.), pp. 313–325, Academic Press, New York.

    Google Scholar 

  • Stein, L., Wise, C. D., and Berger, B. D., 1973, Antianxiety action of benzodiazepines: decrease in activity of serotonin neurons in the punishment system, in: The Benzodiazepines (S. Garattini, E. Mussini, and L. O. Randall, eds.), pp. 299–326, Raven Press, New York.

    Google Scholar 

  • Stumpf, C., 1965, Drug action on the electrical activity of the hippocampus, Int. J. Neurobiol. 8:77–138.

    Article  Google Scholar 

  • Sutherland, N. S., and Macintosh, N., 1972, Mechanisms of Animal Discrimination Learning, Academic Press, London.

    Google Scholar 

  • Taylor, K. M., and Laverty, R., 1969, The effect of chlordiazepoxide, diazepam, and nitrazepam on catecholamine metabolism in regions of the rat brain, Eur. J. Pharmacol. 8:296–301.

    Article  PubMed  Google Scholar 

  • Taylor, K. M., and Laverty, R., 1973, The interaction of chlordiazepoxide, diazepam, and nitrazepam with catecholamine and histamine in regions of the rat brain, in: The Benzodiazepines (S. Garratini, E. Mussini, and L. O. Randall, eds.), pp. 191–202, Raven Press, New York.

    Google Scholar 

  • Tenen, S. S., 1967, Recovery techolamine metabolism in regions of the rat brain, Eur. J. Pharmacol. 8:296–301.

    Google Scholar 

  • Taylor, K. M., and Laverty, R., 1973, The interaction of chlordiazepoxide, diazepam, and nitrazepam with catecholamine and histamine in regions of the at brain, in: The Benzodiazepines (S. Garratini, E. Mussini, and L. O. Randall, eds.), pp. 191–202, Raven Press, New York.

    Google Scholar 

  • Tenen, S. S., 1967, Recovery time as a measure of CER strength: effects of Benzodiazepines, amobarbital, chloropromazine and amphetamine, Psychopharmacologia 12:1–17.

    Article  PubMed  Google Scholar 

  • Thompson, R. F., and Spencer, W. A., 1966, Habituation. A model phenomenon for the study of neuronal substrates of behavior, Psychol. Rev. 173:16–43.

    Article  Google Scholar 

  • Thornburg, J. E., and Moore, K. E., 1973, The relative importance of dopaminergic and noradrenergic neuronal systems for the stimulation of locomotor activity induced by amphetamine and other drugs, Neuropharmacology 12:853–866.

    Article  PubMed  Google Scholar 

  • Thorpe, W. H., 1956, Learning and Instinct in Animals, Methuen, London.

    Google Scholar 

  • Tye, N. C., Iversen, S. D., and Everitt, B. J., 1976, Release of punished behavior following selective brain 5-hydroxytryptamine depletion, British Association of Psychopharmacology, Cambridge.

    Google Scholar 

  • Ungerstedt, U., 1971, Stereotoxic mapping of the monamine pathways in the rat, Acta Physiol. Scand. Suppl. 367:1–48.

    PubMed  Google Scholar 

  • Van der Poel, A. M., 1972, Centrally acting cholinolytics and the choice behaviour of the rat, Prog. Brain Res. 36:127–136.

    Article  PubMed  Google Scholar 

  • Van der Poel, A. M., 1973, Registration of choice direction in a T-maze in rats under the influence of N-methyl-4-piperidyl cyclopentyl methylethynyl glycolate (PCMG), a centrally acting cholinolytic, Psychopharmacologia 31:271–290.

    Article  Google Scholar 

  • Van der Poel, A. M., 1974, The effect of some cholinolytic drugs on a number of behavioral parameters measured in the T-maze alternation test: dose-response relationships, Psychopharmacologia 37:45–58.

    Article  PubMed  Google Scholar 

  • Vogel, J. R., Hughes, R. A., and Carlton, P. L., 1967, Scopolamine, atropine and conditioned fear, Psychopharmacologia 10:409–416.

    Article  PubMed  Google Scholar 

  • Vogel, J. R., Beer, B., and Clody, D. E., 1971, A simple and reliable conflict procedure for testing anti-anxiety agents, Psychopharmacologia 21:1–7.

    Article  PubMed  Google Scholar 

  • Warburton, D. M., 1957, Some behavioral effects of central cholinergic stimulation with special reference to the hippocampus, doctoral thesis, Indiana University, Bloomington, Indiana.

    Google Scholar 

  • Warburton, D. M., 1969a, Behavioral effects of central and peripheral changes in acetylcholine systems, J. Comp. Physiol. Psychol. 68:56–64.

    Article  PubMed  Google Scholar 

  • Warburton, D. M., 1969b, Effects of atropine sulfate on single alternation in hippocampectomised rats, Physiol. Behav. 4:641–644.

    Article  Google Scholar 

  • Warburton, D. M., 1972a, The cholinergic control of internal inhibition, in: Inhibition and Learning (R. M. Boakes and M. S. Halliday, eds.), pp. 431–460, Academic Press, London.

    Google Scholar 

  • Warburton, D. M., 1972b, Effects of atropine sulphate on repeated extinction performance in hippocampectomised rats, Psychopharmacologia 23:348–356.

    Article  PubMed  Google Scholar 

  • Warburton, D. M., 1974a, The effect of scopolamine on a two-cue discrimination, Qt. J. Exp. Psychol. 26:395–404.

    Article  Google Scholar 

  • Warburton, D. M., 1975a, Modern biochemical concepts of anxiety, Int. Pharmacopsychiat. 9:189–205.

    Google Scholar 

  • Warburton, D. M., 1975b, Brain, Behaviour and Drugs, Wiley, London.

    Google Scholar 

  • Warburton, D. M., and Brown, K., 1971, Scopolamine-induced attenuation of stimulus sensitivity, Nature (London) 230:126–127.

    Article  Google Scholar 

  • Warburton, D. M., and Brown, K., 1973, The facilitation of discrimination performance by physostigmine sulphate, Psychopharmacologia 27:275–284.

    Article  Google Scholar 

  • Warburton, D. M., and Groves, P., 1969, The effect of scopolamine on habituation of acoustic startle in rats, Commun. Behav. Biol. 3:289–293.

    Google Scholar 

  • Warburton, D. M., and Heise, G. A., 1972, The effects of scopolamine on spatial double alternation in rats, J. Camp. Physiol. Psychol. 81:523–532.

    Article  Google Scholar 

  • Warburton, D. M., and Russell, R. W., 1969, Some behavioral effects of cholinergic stimulation of the hippocampus, Life Sci. 8:617–627.

    Article  PubMed  Google Scholar 

  • Wedeking, P. W., 1968, Stimulating effects of chlordiazepoxide in rats on a food reinforced FR schedule, Psychonomic. Sci. 12:31–32.

    Google Scholar 

  • Wedeking, P. W., 1969, Disinhibition effect of chlordiazepoxide, Psychonomic Sci. 15:232–233.

    Google Scholar 

  • Weissman, A., 1959, Differential drug effects upon a three ply multiple schedule of reinforcement, J. Exp. Anal. Behav. 2:271–291.

    Article  PubMed  Google Scholar 

  • Wentink, E., 1938, The effects of certain drugs and hormones upon conditioning, J. Exp. Psychol. 22:150–163.

    Article  Google Scholar 

  • Whitehouse, J. M., 1964, Effects of atropine on discrimination learning in the rat, J. Comp. Physiol. Psychol. 57:13–15.

    Article  PubMed  Google Scholar 

  • Whitehouse, J. M., 1966, The effect of physostigmine on discrimination learning, Psychopharmacologia 9:183–188.

    Article  PubMed  Google Scholar 

  • Whitehouse, J. M., 1967, Cholinergic mechanisms in discrimination learning as a function of stimuli J. Comp. Physiol. Psychol. 63:448–451.

    Article  Google Scholar 

  • Whitehouse, J. M., Lloyd, A. J., and Fifer, S. A., 1964, Comparative effects of atropine and methylatropine on maze acquisition and eating. J. Comp. Physiol. Psyehol. 58:475–476.

    Article  Google Scholar 

  • Wise, C. D., Berger, B. D., and Stein, L., 1972, Benzodiazepines: anxiety-reducting activity by reduction of serotonin turnover in the brain, Science 77:180–183.

    Article  Google Scholar 

  • Wise, C. D., and Stein, L., 1969, Facilitation of brain self-stimulation by central administration of norepinephrine, Science 163:299–301.

    Article  PubMed  Google Scholar 

  • Williams, J. M., Hamilton, L. W., and Carlton, P. L., 1974, Pharmacological and anatomical dissociation of two types of habituation, J. Comp. Physiol. Psychol. 87:724–732.

    Article  PubMed  Google Scholar 

  • Zbinden, G., 1960, Pharmacodynamics of tetrabenazine and its derivatives, in: Psychosomatic Medicine (J. Nodine and J. Moyer, eds.), pp. 443–454, Lea and Fibiger, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Warburton, D.M. (1977). Stimulus Selection and Behavioral Inhibition. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Drugs, Neurotransmitters, and Behavior. Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3180-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3180-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3182-7

  • Online ISBN: 978-1-4684-3180-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics