Skip to main content

5′-Deoxy-5′-Methylthioadenosine Phosphorylase Deficiency in Leukemia: Genetics and Biochemical Aspects

  • Chapter
  • First Online:
Purine and Pyrimidine Metabolism in Man V

Abstract

In mammalian cells, 5′-deoxy-5′-methylthioadenosine (MTA) derives from decarboxylated S-adenosyl methionine during spermidine and spermine synthesis.1 To a lesser extent, MTA Is also produced following the aminocarboxypropyl group transfer from S-adenosylmethionine to certain tRNA uridine residues2 (Fig. 1). Although MTA can inhibit polyamine amlnopropyl transferase reactions3, the thioether nucleoside does not accumulate In normal cells but Is rapidly cleaved to adenine and 5-methylthioribose 1-phosphate by the enzyme MTA Phosphorylase. As shown In Figure 1, MTA Phosphorylase is important not only for the balanced synthesis of polyamlnes, but also for the economic Intracellular salvage of adenine nucleotides and methionine. 4, 5 The enzyme is present In all normal tissues studied thus far. Recently, we have assigned the gene for MTA Phosphorylase to the 9pter→9q12 region of human chromosome 9 by analysis of mouse-human somatic cell hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. E. Pegg and H. G. Williams-Ashman, On the role of S-adenosyl-L-methionline in the biosynthesis of spermidine by rat prostate, J. Biol. Chem. 244: 682 (1969).

    CAS  PubMed  Google Scholar 

  2. A. G. Saponara and M. D. Enger, The Isolation from ribonucleic acid of substituted uridines. containing alpha-amlnobutyrate moieties derived from methionine, Bloch Im. Biophys. Acta 349: 61 (1974).

    CAS  Google Scholar 

  3. R.-L. Pajula, A. Raina, and T. Eloranta, Polyamlne synthesis In mammalian tissues. Isolation and characterization of spermine synthesis from bovine brain, Eur. J. Biochem. 101: 619 (1979).

    Article  CAS  Google Scholar 

  4. N. Kamatani and D. A. Carson, Dependence of adenine production upon polyamlne synthesis In cultured human lymphoblasts, Biochim Biophys. Acta 675: 344 (1981).

    Article  CAS  Google Scholar 

  5. P. S. Backlund, Jr. and R. A. Smith, Methionine synthesis from 5′-methylthloadenoslne In rat liver, J. Biol. Chem. 256: 1533 (1981).

    CAS  PubMed  Google Scholar 

  6. C. J. Carrera, R. L. Eddy, T. B. Shows, and D. A. Carson, Assignment of the gene for methylthloadenoslne Phosphorylase to human chromosome 9 by mouse-human somatic cell hybridization, Proc, Natl. Acad. Sci. USA 81: 2665 (1984).

    Article  CAS  Google Scholar 

  7. J. I. Toohey, Methylthio group cleavage from methylthioadenosine. Description of an enzyme and Its relationship to the methylthio requirement of certain cells In culture, Biochem. Biophys, Res. Commun. 78: 1273 (1977).

    Article  CAS  Google Scholar 

  8. N. Kamatani, W. A. Nelson-Rees, and D. A. Carson, Selective killing of human malignant cell lines deficient In methylthioadenosine Phosphorylase, a purine metabolic enzyme, Proc. Natl. Acad. Sci. USA 78: 1219 (1981).

    Article  CAS  Google Scholar 

  9. N. Kamatani, A. L. Yu, and D. A. Carson, Deficiency of methylthloadenoslne Phosphorylase In human leukemic cells In vivo, Blood 60: 1387 (1982).

    CAS  PubMed  Google Scholar 

  10. J. Kowalczyk and A. A. Sandberg, A possible subgroup of ALL with 9p-, Cancer Genet. Cytogenet. 9: 383 (1983).

    Article  CAS  Google Scholar 

  11. R. R. Chilcote, E. Brown, and J. D. Rowley, Lymphoblastic leukemic with lymphomatous features associated with abnormalities of the short arm of chromosome 9, N. Engl. J. Med. 313: in press (1985).

    Article  CAS  Google Scholar 

  12. M. Kubota, N. KamatanI, and D. A. Carson, Biochemical genetic analysis of the role of methylthioadenosine Phosphorylase In a murine lymphoid cell line, J. Biol. Chem. 258: 7288 (1983).

    CAS  PubMed  Google Scholar 

  13. N. KamatanI, M. Kubota, E. H. Willis, and D. A. Carson, 5′-Methylthloadenosine Phosphorylase deficiency in malignant cells: recessive expression of the defective phenotype In intraspecies (mouse × human) hybrids, Adv. Exp. Med. Biol. 165B: 279 (1984).

    Google Scholar 

  14. G. B. Chheda, H. B. Patrzyc, A. K. Bhargava, S. K. Sethi, P. F. Craln, J. A. Mc Closkey, and S. P. Dutta, Characterization of two novel nucleosides Isolated from chronic myelogenous leukemia (CML) urine, Proc. Am. Assoc. Cancer. Res. 25: 22 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Carrera, C.J., Willis, E.H., Chilcote, R.R., Kubota, M., Carson, D.A. (1986). 5′-Deoxy-5′-Methylthioadenosine Phosphorylase Deficiency in Leukemia: Genetics and Biochemical Aspects. In: Nyhan, W.L., Thompson, L.F., Watts, R.W.E. (eds) Purine and Pyrimidine Metabolism in Man V. Advances in Experimental Medicine and Biology, vol 195B. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-1248-2_100

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1248-2_100

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-1250-5

  • Online ISBN: 978-1-4684-1248-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics