Skip to main content

Insulin: Biochemical and Physiological Aspects

  • Chapter
Principles of Perinatal-Neonatal Metabolism
  • 360 Accesses

Abstract

For more than half a century insulin has occupied the position as the most intensively studied mammalian hormone. This situation stems in part from its role as the preeminent anabolic hormone in mammals. The effort put into understanding the physiology and biochemistry of this peptide follows a rich scientific history that has come from its study. The demonstration by von Mering and Minkowski in 1889 that pancreatectomy in the dog resulted in a syndrome similar to diabetes mellitus1 eventually led to the discovery of insulin, which is credited to Banting and Best.2 A number of seminal discoveries that had an impact on all of biochemical physiology followed: quantification of the hormone by radioimmunoassay,3 sequencing of the peptide,4 complete synthesis of the hormone,5–6 determination of its x-ray crystallographic structure,7 and, most recently, cloning of the gene for insulin8 and synthesis of the recombinant protein for therapeutic use.9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Von Mering J, Minkowski O. Diabetes mellitus nach pankreasexstirpation. Arch Exp Pathol Pharmakol 1889;26:371–387.

    Google Scholar 

  2. Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med 1922;7:251–266.

    CAS  Google Scholar 

  3. Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest 1960;39:1157–1175.

    Article  PubMed  CAS  Google Scholar 

  4. Sanger F. Chemistry of insulin. Br Med Bull 1960; 16: 183–188.

    PubMed  CAS  Google Scholar 

  5. Katsoyannis PG, Tometsko A, Fukuda K. Insulin peptides. IX. The synthesis of the A-chain of insulin and its combination with natural B-chain to generate insulin activity. J Am Chem Soc 1963;85:2863–2865.

    Article  CAS  Google Scholar 

  6. Meienhofer J, Schnabel E, Brinkoff O, et al. Synthese der insulin Ketten und ihre Kombination zu insulinaktiven Praparaten. Z Naturforsch [C] 1963; 18h: 1120.

    Google Scholar 

  7. Hodgkin DC, Mercola D. The secondary and tertiary structure of insulin. In Steiner DF, Freinkel N (eds): Handbook of physiology. Vol. 1. Endocrine pancreas. Sect. 7. Endocrinology. Washington, DC: American Physiological Society, 1972:139–157.

    Google Scholar 

  8. Ullrich A, Shine J, Chirgwin J, et al. Rat insulin genes: construction of plasmids containing the coding sequences. Science 1977;196:1313–1319.

    Article  PubMed  CAS  Google Scholar 

  9. Goeddel DV. Expression in Escherichia coli of chemically synthesized genes for human insulin. Natl Acad Sci USA 1979;76:106–110.

    Article  CAS  Google Scholar 

  10. Cohen P, Parker PJ, Woodgett JR. The molecular mechanism by which insulin activates glycogen synthase in mammalian skeletal muscle. In Czech MP (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:213–233.

    Google Scholar 

  11. Rosen OM. After insulin binds. Science 1987;237: 1452–1458.

    Article  PubMed  CAS  Google Scholar 

  12. Ullrich A, Bell JR, Chen EY, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985;313:756–761.

    Article  PubMed  CAS  Google Scholar 

  13. Kasuga M, Karlsson FA, Kahn CR. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 1982;215:185–187.

    Article  PubMed  CAS  Google Scholar 

  14. Low MG, Saltiel AR. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 1988;239:268–275.

    Article  PubMed  CAS  Google Scholar 

  15. Steiner DF, Hallund W, Rubenstein AH, et al. Isolation and properties of proinsulin, intermediate forms, and other minor components from crystalline bovine insulin. Diabetes 1968;17:725–736.

    PubMed  CAS  Google Scholar 

  16. Chance RE, Ellis RM, Bromer WW. Porcine proinsulin: characterization and amino acid sequence. Science 1968;161:165–167.

    Article  PubMed  CAS  Google Scholar 

  17. Chan SJ, Keim P, Steiner DF. Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc Natl Acad Sci USA 1976;73:1964–1968.

    Article  PubMed  CAS  Google Scholar 

  18. Steiner DF. The biosynthesis of insulin: genetic, evolutionary, and pathophysiologic aspects. Harvey Lect 1984;78:191–228.

    Google Scholar 

  19. Steiner DF, Clark JL, Nolan C, et al. The biosynthesis of insulin and some speculations regarding the pathogenesis of human diabetes. In Cerasi E, Luft R (eds): Nobel Symposium 13: Pathogenesis of diabetes mellitus. Stockholm: Almqvist & Wiksell, 1970:57–80.

    Google Scholar 

  20. Frank BH, Veros AJ. Physical studies on proinsulin-association behavior and conformation in solution. Biochem Biophys Res Commun 1968;32:155–160.

    Article  PubMed  CAS  Google Scholar 

  21. Frank BH, Veros AJ, Pekar AH. Physical studies on proinsulin: a comparison of the titration behavior of the tyrosine residues in insulin and proinsulin. Biochemistry 1972;11:4926–4931.

    Article  PubMed  CAS  Google Scholar 

  22. Gavin JR III, Kahn CR, Gorden P, et al. Radioreceptor assay of insulin: comparison of plasma and pancreatic insulins and proinsulin. J Clin Endocrinol Metab 1975;41:438–445.

    Article  PubMed  CAS  Google Scholar 

  23. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978;253: 2769–2776.

    PubMed  CAS  Google Scholar 

  24. Blundel TL, Bedarkar S, Rinderknecht E, et al. Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc Natl Acad Sci USA 1978;75:180–184.

    Article  Google Scholar 

  25. Gruppuso PA, Frank BH, Schwartz R. Binding of proinsulin and proinsulin conversion intermediates to human placental insulin-like growth factor I receptors. J Clin Endocrinol Metab 1988;67:194–197.

    Article  PubMed  CAS  Google Scholar 

  26. King JL, Kahn CR. Non-parallel evolution of metabolic and growth-promoting functions of insulin. Nature 1981;292:644–646.

    Article  PubMed  CAS  Google Scholar 

  27. Rubenstein AH, Clark JL, Melani F, et al. Secretion of proinsulin C-peptide by pancreatic beta cells and its circulation in blood. Nature 1969;224:697–699.

    Article  CAS  Google Scholar 

  28. Eaton RP, Allen RC, Schade DS, et al. Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 1980;51:520–528.

    Article  PubMed  CAS  Google Scholar 

  29. Horwitz DL, Rubenstein AH, Katz AI. Quantitation of human pancreatic beta cell function by immunoassay of C-peptide in urine. Diabetes 1977; 26:30–35.

    Article  PubMed  CAS  Google Scholar 

  30. Kuzuya H, Blix PM, Horwitz DL, et al. Determination of free and total insulin and C-peptide in insulin-treated diabetics. Diabetes 1977;26:22–29.

    Article  PubMed  CAS  Google Scholar 

  31. Kuzuya T, Matsuda A, Sakamoto T, et al. C-peptide immunoreactivity (CPR) in urine. Diabetes 1978;27 (suppl 1):210–215.

    Article  PubMed  CAS  Google Scholar 

  32. Gero L, Baranyi E, Bekefi D, et al. Investigation on serum C-peptide concentrations in pregnant diabetic women and in newborns of diabetic mothers. Horm Metab Res 1981;14:516–520.

    Article  Google Scholar 

  33. Block MB, Pildes RS, Mossabhoy NA, et al. C-peptide immunoreactivity: a new method for studying infants of insulin-treated mothers. Pediatrics 1974; 53:923–928.

    PubMed  CAS  Google Scholar 

  34. Sosenko IR, Kitzmiller JL, Loo SW, et al. The infant of the diabetic mother: correlation of increased cord C-peptide levels with macrosomia and hypoglycemia. N Engl J Med 1979;301:859–862.

    Article  PubMed  CAS  Google Scholar 

  35. Polonsky K, Jaspan JB, Pugh W. Metabolism of C-peptide in the dog: in vivo demonstration of the absence of hepatic extraction. J Clin Invest 1983;72:1114–1123.

    Article  PubMed  CAS  Google Scholar 

  36. Polonsky KS, Rubenstein AH. C-peptide as a measure of the secretion and hepatic extraction of insulin: pitfalls and limitations. Diabetes 1984;33:486–494.

    Article  PubMed  CAS  Google Scholar 

  37. Gruppuso PA, Susa JB, Sehgal P, et al. Metabolism and placental transfer of 125I-proinsulin and 125I-ty-rosylated C-peptide in the pregnant rhesus monkey. J Clin Invest 1987;80:1132–1137.

    Article  PubMed  CAS  Google Scholar 

  38. De Haen C, Litle SA, May JM, et al. Characterization of proinsulin-insulin intermediates in human plasma. J Clin Invest 1978;62:727–737.

    Article  PubMed  Google Scholar 

  39. Rubenstein AH, Cho S, Steiner DF. Evidence for proinsulin in human urine and serum. Lancet 1968; 1:1353–1355.

    Article  PubMed  CAS  Google Scholar 

  40. Roth J, Gorden P, Pastan I. “Big insulin”: a new component of plasma insulin detected by immunoassay. Proc Natl Acad Sci USA 1968;61:138–145.

    Article  PubMed  CAS  Google Scholar 

  41. Deacon CF, Conlon JM. Measurement of circulating proinsulin concentrations using a proinsulin-specific antiserum. Diabetes 1985;34:491–497.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen RM, Nakabayashi T, Blix PM, et al. A radioimmunoassay for circulating human proinsulin. Diabetes 1985;34:84–91.

    Article  PubMed  CAS  Google Scholar 

  43. Gorden P, Roth J. Plasma insulin: fluctuations in the “big” insulin component in man after glucose and other stimuli. J Clin Invest 1969;48:2225–2234.

    Article  PubMed  CAS  Google Scholar 

  44. Gorden P, Sherman BM, Simopoulos AP. Glucose intolerance with hypokalemia: an increased proportion of circulating proinsulin-like component. J Clin Endocrinol Metab 1972;34:235–240.

    Article  PubMed  CAS  Google Scholar 

  45. Gorden P, Hendricks CM, Roth J. Circulating proinsulin-like component in man: increased proportion in hypoinsulinemic states. Diabetologia 1974; 10: 469–474.

    Article  PubMed  CAS  Google Scholar 

  46. Sherman BM, Gorden P, Roth J, et al. Circulating insulin: the proinsulin-like properties of “big” insulin in patients without islet cell tumors. J Clin Invest 1971;50:849–858.

    Article  PubMed  CAS  Google Scholar 

  47. Kuhl C, Hvorslev V, Tygstrup I, et al. Elevated serum proinsulin in beta cell nesidioblastosis: report of a case in a newborn. Scand J Gastroenterol 1979;14(suppl 53):49–52.

    Google Scholar 

  48. Heding LG, Persson B, Stangenberg M. B-cell function in newborn infants of diabetic mothers. Diabetologia 1980;19:427–432.

    Article  PubMed  CAS  Google Scholar 

  49. Gabbay KH, DeLuca K, Fisher JN Jr, et al. Familial hyperproinsulinemia: an autosomal dominant defect. N Engl J Med 1976;294:911–915.

    Article  PubMed  CAS  Google Scholar 

  50. Kanazawa Y, Hayashi M, Ikeuchi M, et al. Familial proinsulinemia: a rare disorder of insulin biosynthesis. In Baba S, Kaneko T, Yanihara N (eds): Proinsulin, insulin, C-peptide. Amsterdam: Excerpta Medica, 1979:262–269.

    Google Scholar 

  51. Gruppuso PA, Gordon P, Kahn CR, et al. Familial hyperproinsulinemia due to a proposed defect in proinsulin to insulin conversion. N Engl J Med 1984;311: 629–634.

    Article  PubMed  CAS  Google Scholar 

  52. Robbins DC, Shoelson SE, Rubenstein AH, et al. Familial hyperproinsulinemia: two cohorts secreting indistinguishable type II intermediates of proinsulin conversion. J Clin Invest 1984;73:714–719.

    Article  PubMed  CAS  Google Scholar 

  53. Shibasaki Y, Kawakami T, Kanazawa Y, et al. Post-translational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia. J Clin Invest 1985;76:378–380.

    Article  PubMed  CAS  Google Scholar 

  54. Chan SJ, Seino S, Gruppuso PA, et al. A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. Proc Natl Acad Sci USA 1987;84:2194–2197.

    Article  PubMed  CAS  Google Scholar 

  55. Owerbach D, Bell GI, Rutter WJ, et al. The insulin gene is located on the short arm of chromosome 11 in humans. Diabetes 1981;30:267–270.

    Article  PubMed  CAS  Google Scholar 

  56. Bell GI, Pictet RL, Rutter WJ, et al. Sequence of the human insulin gene. Nature 1980;284:26–32.

    Article  PubMed  CAS  Google Scholar 

  57. Ullrich A, Dull TJ, Gray A, et al. Genetic variation in the human insulin gene. Science 1980;209:612–615.

    Article  PubMed  CAS  Google Scholar 

  58. Chan SJ, Noyes BE, Agarwal KL, et al. Construction and selection of recombinant plasmids containing full-length complementary DNAs corresponding to rat insulins I and II. Proc Natl Acad Sci USA 1979;76: 5036–5040.

    Article  PubMed  CAS  Google Scholar 

  59. Seiden RF, Skoskiewicz MJ, Russell PS, et al. Regulation of insulin-gene expression: implications for gene therapy. N Engl J Med 1987;317:1067–1076.

    Article  Google Scholar 

  60. Bell GI, Selby MJ, Rutter WJ. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 1982; 295:31–35.

    Article  PubMed  CAS  Google Scholar 

  61. Ullrich A, Dull TJ, Gray A, et al. Variation in the sequence and modification state of the human insulin gene flanking regions. Nucleic Acids Res 1982; 10: 2226–2240.

    Article  Google Scholar 

  62. Permutt MA, Chirgwin J, Rotwein P, et al. Insulin gene structure and function: a review of studies using recombinant DNA methodology. Diabetes Care 1984; 7:386–394.

    Article  PubMed  CAS  Google Scholar 

  63. Owerbach D, Nerup J. Restriction fragment length polymorphism of the insulin gene in diabetes mellitus. Diabetes 1982;31:275–277.

    Article  PubMed  CAS  Google Scholar 

  64. Rotwein PS, Chirgwin J, Province M, et al. Polymorphism in the 5’ flanking region of the human insulin gene: a genetic marker for non-insulin-dependent diabetes. N Engl J Med 1983;308:65–71.

    Article  PubMed  CAS  Google Scholar 

  65. Elbein SC, Gruppuso P, Schwartz R, et al. Hyper-proinsulinemia in a family with a proposed defect in conversion is linked to the insulin gene. Diabetes 1985;34:821–824.

    Article  PubMed  CAS  Google Scholar 

  66. Tager HW. Abnormal products of the human insulin gene. Diabetes 1984;33:693–699.

    Article  PubMed  CAS  Google Scholar 

  67. Ward WK, Beard JC, Halter JB, et al. Pathophysiology of insulin secretion in non-insulin-dependent diabetes mellitus. Diabetes Care 1984;7:491–502.

    Article  PubMed  CAS  Google Scholar 

  68. Sumi T, Ui M. Potentiation of the adrenergic beta-receptor-mediated insulin secretion in pertussis-sensitized rats. Endocrinology 1975;97:352–357.

    Article  PubMed  CAS  Google Scholar 

  69. Curry DL, Bennett LL, Grodsky GM. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 1968;83:572–578.

    Article  PubMed  CAS  Google Scholar 

  70. Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 1986;2:163–214.

    Article  PubMed  CAS  Google Scholar 

  71. Howell SL, Tyhurst M. The cytoskeleton and insulin secretion. Diabetes Metab Rev 1986;2:107–123.

    Article  PubMed  CAS  Google Scholar 

  72. Sodoyez JC, Sodoyez-Goffaux F, Guillaume M, et al. [123I]insulin metabolism in normal rats and humans: external detection by a scintillation camera. Science 1983;219:865–867.

    Article  PubMed  CAS  Google Scholar 

  73. Pessin JE, Mottola C, Yu K-T, et al. Subunit structure and regulation of the insulin-receptor complex. In Czech M (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:3–30.

    Google Scholar 

  74. Pilch PF, Czech MP. The subunit structure of the high affinity insulin receptor: evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes. J Biol Chem 1980;19:70–75.

    Google Scholar 

  75. Kahn CR, White MF, Grigorescu F, et al. The insulin receptor protein kinase. In Czech MP (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:67–93.

    Google Scholar 

  76. Hari J, Roth RA. Defective internalization of insulin and its receptor in cells expressing mutated insulin receptors lacking kinase activity. J Biol Chem 1987; 262:15341–15344.

    PubMed  CAS  Google Scholar 

  77. Freidenberg GR, Henry RR, Klein HH, et al. Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects. J Clin Invest 1987;79:240–250.

    Article  PubMed  CAS  Google Scholar 

  78. Caro JF, Ittoop O, Pories WJ, et al. Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. J Clin Invest 1986;78:249–258.

    Article  PubMed  CAS  Google Scholar 

  79. Grunberger G, Zick Y, Gorden P. Defect in phosphorylation of insulin receptors in cells from an insulin-resistant patient with normal insulin binding. Science 1984;223:932–935.

    Article  PubMed  CAS  Google Scholar 

  80. Debant A, Clauser E, Ponzio G, et al. Replacement of insulin receptor tyrosine residues 1162 and 1163 does not alter the mitogenic effect of the hormone. Proc Natl Acad Sci USA 1988;85:8032–8036.

    Article  PubMed  CAS  Google Scholar 

  81. Roth R, Beaudoin J. Phosphorylation of purified insulin receptor by cAMP kinase. Diabetes 1987;36:123–126.

    Article  PubMed  CAS  Google Scholar 

  82. Jacobs S, Cuatrecasas P. Phosphorylation of receptors for insulin and insulin-like growth factor I. J Biol Chem 1986;261:934–939.

    PubMed  CAS  Google Scholar 

  83. Lewis RE, Wu PG, MacDonald RG, et al. Insulinsensitive phosphorylation of serine 1293/1294 on the human insulin receptor by a tightly associated serine kinase. J Biol Chem 1990;265:947–954.

    PubMed  CAS  Google Scholar 

  84. Heidenreich KA, Olefsky JM. The metabolism of insulin receptors: internalization, degradation, and recycling. In Czech MP (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:45–66.

    Google Scholar 

  85. Neufeld ND, Kaplan SA, Lippe BM. Increased monocyte receptor binding of 125I-insulin in infants of gestational diabetic mothers. J Clin Endocrinol Metab 1978;47:590–595.

    Article  PubMed  CAS  Google Scholar 

  86. Gruppuso PA. Effects of fetal hypoinsulinemia on fetal hepatic insulin binding in the rat. Biochim Biophys Acta 1989;1010:270–273.

    Article  PubMed  CAS  Google Scholar 

  87. White MF, Maron R, Kahn CR. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 1985;318:183–186.

    Article  PubMed  CAS  Google Scholar 

  88. Rees-Jones RW, Taylor SI. An endogenous substrate for the insulin receptor-associated tyrosine kinase. J Biol Chem 1985;260:4461–4467.

    PubMed  CAS  Google Scholar 

  89. Bernier M, Laird DM, Lane MD: Insulin-activated tyrosine phosphorylation of a 15-kilodalton protein in intact 3T3-L1 adipocytes. Proc Natl Acad Sci USA 1987;84:1844–1848.

    Article  PubMed  CAS  Google Scholar 

  90. Saltiel AR, Fox JA, Sherline P, et al. Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 1986;233:967–972.

    Article  PubMed  CAS  Google Scholar 

  91. Larner J. Insulin-signaling mechanisms: lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 1988;37: 262–275.

    PubMed  CAS  Google Scholar 

  92. Saltiel AR. Insulin generates an enzyme modulator from hepatic plasma membranes: regulation of adenosine 3’5’- monophosphate phosphodiesterase, pyruvate dehydrogenase and adenylate cyclase. Endocrinology 1987;120:967–972.

    Article  PubMed  CAS  Google Scholar 

  93. Cori GT, Cori CF. The enzymatic conversion of Phosphorylase a to b. J Biol Chem 1945;158:321–332.

    CAS  Google Scholar 

  94. Krebs EG, Fischer EH. The Phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 1956;20:150–157.

    Article  PubMed  CAS  Google Scholar 

  95. Robison GA, Butcher RW, Sutherland EW (eds). Cyclic AMP. Orlando: Academic Press, 1971:91–144.

    Google Scholar 

  96. Yu K-T, Khalaf N, Czech MP. Insulin stimulates a membrane-bound serine kinase that may be phosphor-ylated on tyrosine. Proc Natl Acad Sci USA 1987;84: 3972–3976.

    Article  PubMed  CAS  Google Scholar 

  97. Berndt N, Campbell DG, Caudwell FB, et al. Isolation and sequence analysis of a cDNA clone encoding a type-1 protein phosphatase catalytic subunit: homology with protein phosphatase 2A. FEBS Lett 1987;223:340–346.

    Article  PubMed  CAS  Google Scholar 

  98. Da Cruz e Silva O, Alemany S, Campbell DG, et al. Isolation and sequence analysis of a cDNA clone encoding the entire catalytic subunit of a type-2A protein phosphatase. FEBS Lett 1987;221:415–422.

    Article  Google Scholar 

  99. Goris J, Defreyn G, Vandenheede JR, et al. Protein inhibitors of dog-liver Phosphorylase phosphatase dependent on and independent of protein kinase. Eur J Biochem 1978;91:457–464.

    Article  PubMed  CAS  Google Scholar 

  100. Lawrence JC Jr, Hiken J, Burnette B, et al. Phosphorylation of phosphoprotein phosphatase inhibitor-2 (I-2) in rat fat cells. Biochem Biophys Res Commun 1988; 150: 197–203.

    Article  PubMed  CAS  Google Scholar 

  101. Villa-Moruzzi E, Ballou LM, Fischer EH. Phosphorylase phosphatase: interconversion of active and inactive forms. J Biol Chem 1984;259:5857–5863.

    PubMed  CAS  Google Scholar 

  102. Stralfors P, Hiraga A, Cohen P. The protein phosphatases involved in cellular regulation: purification and characterization of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. FEBS Lett 1985; 149:295–303.

    CAS  Google Scholar 

  103. Cheng K, Larner J. Intracellular mediators of insulin action. Annu Rev Physiol 1985;47:405–424.

    Article  PubMed  CAS  Google Scholar 

  104. Levine R, Goldstein M. On the mechanism of action of insulin. Recent Prog Horm Res 1955; 11:343–380.

    Google Scholar 

  105. Park CR, Reinwein D, Henderson MJ, et al. The action of insulin on the transport of glucose through the cell membrane. Am J Med 1959;26:674–684.

    Article  PubMed  CAS  Google Scholar 

  106. Crofford OB, Renold AE. Glucose uptake by incubated rat epididymal adipose tissue: characteristics of the glucose transport system and action of insulin. J Biol Chem 1965; 240:3237–3244.

    PubMed  CAS  Google Scholar 

  107. Karnieli E, Zarnowski MJ, Hissin PJ, et al. Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell: time course, reversal, insulin concentration-dependency and relationship to glucose transport activity. J Biol Chem 1981;256: 4772–4777.

    PubMed  CAS  Google Scholar 

  108. Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell: apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 1980;255: 4758–4762.

    PubMed  CAS  Google Scholar 

  109. Kono T, Robinson FW, Blevins TL, et al. Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J Biol Chem 1982;257:10942–10947.

    PubMed  CAS  Google Scholar 

  110. Kahn BB, Horton ES, Cushman SW. Mechanism for enhanced glucose transport response to insulin in adipose cells from chronically hyperinsulinemic rats: increased translocation of glucose transports from an enlarged intracellular pool. J Clin Invest 1987;79: 853–858.

    Article  PubMed  CAS  Google Scholar 

  111. Mueckler M, Caruso C, Baldwin SA, et al: Sequence and structure of a human glucose transporter. Science 1985; 229:941–945.

    Article  PubMed  CAS  Google Scholar 

  112. Lodish HE Anion-exchange and glucose transport proteins: structure, function and distribution. Harvey Lect 1987;82:19–46.

    CAS  Google Scholar 

  113. James DE, Brown R, Navarro J, et al. Insulin regulata-ble tissues express a unique insulin-sensitive glucose transport protein. Nature 1988;333:183–185.

    Article  PubMed  CAS  Google Scholar 

  114. Kasanicki MA, Pilch PF. Regulation of glucose transporter function. Diabetes Care 1990; 13:228–243.

    Article  Google Scholar 

  115. Cherrington AD, Stevenson RW, Steiner KE, et al. Insulin, glucagon, and glucose as regulators of hepatic glucose uptake and production in vivo. Diabetes Metab Rev 1987;3:307–332.

    Article  PubMed  CAS  Google Scholar 

  116. Wang Y, Bell AW, Hermodson MA, et al. Liver isozyme of rabbit glycogen synthase. Amino acid sequences surrounding phosphorylation sites recognized by cyclic amp-dependent protein kinase. J Biol Chem 1986;261:16909 – 16915.

    PubMed  CAS  Google Scholar 

  117. Imazu M, Strickland WG, Chrisman TD, et al. Phosphorylation and inactivation of liver glycogen synthase by liver protein kinases. J Biol Chem 1984;259: 1813–1821.

    PubMed  CAS  Google Scholar 

  118. Akatsuka A, Singh TJ, Huang K-P. Phosphorylation of rat liver glycogen synthase by Phosphorylase kinase. J Biol Chem 1984;259:7878–7883.

    PubMed  CAS  Google Scholar 

  119. Shahed AR, Mehta PP, Chalker D, et al. Stimulation of rat liver Phosphorylase phosphatase activity by insulin. Biochem Int 1980;1:486–492.

    CAS  Google Scholar 

  120. Farkas I, Toth B, Got G, et al. Hormonal regulation of Phosphorylase phosphatase activity in rat liver. FEBS Lett 1986;203:253–256.

    Article  PubMed  CAS  Google Scholar 

  121. Toth B, Bollen M, Stalmans W Acute regulation of hepatic protein phosphatases by glucagon, insulin, and glucose. J Biol Chem 1988;263:14061–14066.

    PubMed  CAS  Google Scholar 

  122. Miller TB Jr, Garnache A, Cruz J. Insulin regulation of glycogen synthase phosphatase in primary cultures of hepatocytes. J Biol Chem 1984;259:12470–12474.

    PubMed  CAS  Google Scholar 

  123. Witters LA, Avruch J. Insulin regulation of hepatic glycogen synthase and Phosphorylase. Biochemistry 1978;17:406–410.

    Article  PubMed  CAS  Google Scholar 

  124. Stalmans W, De Wulf H, Lederer B, et al. The effect of glucose and of a treatment by glucocorticoids on the inactivation in vitro of liver glycogen Phosphorylase. Eur J Biochem 1970;15:9–12.

    Article  PubMed  CAS  Google Scholar 

  125. Stalmans W, De Wulf H, Hue L, et al. The sequential inactivation of glycogen Phosphorylase and activation of glycogen synthetase in liver after the administration of glucose to mice and rats: the mechanism of the hepatic threshold to glucose. Eur J Biochem 1974;41: 127–134.

    Article  CAS  Google Scholar 

  126. Alemany S, Cohen P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Lett 1986; 198: 194–202.

    Article  PubMed  CAS  Google Scholar 

  127. Gruppuso PA, Brautigan DL. Induction of hepatic glycogenesis in the fetal rat. Am J Physiol 1989;256: E49-E54.

    PubMed  CAS  Google Scholar 

  128. Freemark M. Epidermal growth factor stimulates glycogen synthesis in fetal rat hepatocytes: comparison with the glycogenic effects of insulin-like growth factor I and insulin. Endocrinology 1986; 119:522–526.

    Article  PubMed  CAS  Google Scholar 

  129. Freemark M, D’Ercole AJ, Handwerger S. Somatom-edin-C stimulates glycogen synthesis in fetal rat hepatocytes. Endocrinology 1985;116:2578–2582.

    Article  PubMed  CAS  Google Scholar 

  130. Ekman P, Dahlqvist U, Humble E, et al. Comparative kinetic studies on L-type pyruvate kinase from rat liver and the enzyme phosphorylated by cyclic 3’5’-AMP-stimulated protein kinase. Biochim Biophys Acta 1976;429:374–382.

    PubMed  CAS  Google Scholar 

  131. Pilkis SJ, Regen DM, Stewart HB, et al. Evidence for two catalytic sites on 6-phosphofructo-2-kinase/fruc-tose 2,6- bisphosphatase. J Biol Chem 1984;259:949–958.

    PubMed  CAS  Google Scholar 

  132. Exton JH. Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab Rev 1987;3:163–183.

    Article  PubMed  CAS  Google Scholar 

  133. Beale EG, Hartley JL, Granner DK. N6,O2’-dibutyryl cyclic AMP and glucose regulate the amount of messenger RNA coding for hepatic phosphoenolpyruvate carboxykinase (GTP). J Biol Chem 1982;257:2022–2028.

    PubMed  CAS  Google Scholar 

  134. Cimbala MA, Larmers WH, Nelson K, et al. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidney. J Biol Chem 1982;257:7629–7636.

    PubMed  CAS  Google Scholar 

  135. Geelen MJH, Beynen AC, Christiansen RZ, et al. Short-term effects of insulin and glucagon on lipid synthesis in isolated rat hepatocytes. FEBS Lett 1978;95: 326–330.

    Article  PubMed  CAS  Google Scholar 

  136. Beynen AC, Vaartjes WJ, Geelen MJH. Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes 1979;28:828–835.

    Article  PubMed  CAS  Google Scholar 

  137. Brownsey RW, Denton RM. Role of phosphorylation in the regulation of acetyl CoA carboxylase activity. In Czech MP (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:297–314.

    Google Scholar 

  138. Witters LA. Regulation of acetyl CoA carboxylase by insulin and other hormones. In Czech MP (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:315–326.

    Google Scholar 

  139. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest 1977;60: 265–270.

    Article  PubMed  CAS  Google Scholar 

  140. Lakshmanan MR, Nepokroeff CM, Porter JW. Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3’:5’ cyclic monophosphate. Proc Natl Acad Sci USA 1972;69:3516–3519.

    Article  PubMed  CAS  Google Scholar 

  141. McCormick KL, Susa JB, Widness JA, et al. Chronic hyperinsulinemia in the fetal rhesus monkey: effects on hepatic enzymes active in lipogenesis and carbohydrate metabolism. Diabetes 1979;28:1064–1068.

    Article  PubMed  CAS  Google Scholar 

  142. Fain JN. Hormonal regulation of lipid mobilization from adipose tissue. In Litwack G (eds): Biochemical actions of hormones. Vol. VII. Orlando: Academic Press, 1980:119–204.

    Google Scholar 

  143. Simpson IA, Cushman SW. Hexose transport regulation by insulin in the isolated rat adipose cell. In Czech MP (ed): Molecular basis of insulin action. New York: Plenum Press, 1985:399–422.

    Google Scholar 

  144. Narahara HT, Holloszy JO. The actions of insulin, trypsin, and electrical stimulation on amino acid transport in muscle. J Biol Chem 1974;249:5435–5443.

    PubMed  CAS  Google Scholar 

  145. Kimball SR, Jefferson LS. Cellular mechanisms involved in the action of insulin on protein synthesis. Diabetes Metab Rev 1988;4:773–787.

    Article  PubMed  CAS  Google Scholar 

  146. Kettelhut IC, Wing SS, Goldberg AL. Endocrine regulation of protein breakdown in skeletal muscle. Diabetes Metab Rev 1988;4:751–772.

    Article  PubMed  CAS  Google Scholar 

  147. Olivier AR, Ballou LM, Thomas G. Differential regulation of S6 phosphorylation by insulin and epidermal growth factor in Swiss mouse 3T3 cells: insulin activation of type 1 phosphatase. Proc Natl Acad Sci USA 1988;85:4720–4724.

    Article  PubMed  CAS  Google Scholar 

  148. Koch KS, Shapiro S, Skelly H. Rat hepatocyte proliferation is stimulated by insulin-like peptides in defined medium. Biochem Biophys Res Commun 1982; 109: 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  149. Mead JE, Fausto N. Transforming growth factor a (TGF-α) may be a physiological regulator of liver regeneration via an autocrine mechanism. Proc Natl Acad Sci USA 1989;86:1558–1562.

    Article  PubMed  CAS  Google Scholar 

  150. Hill DJ, Milner RDG. Insulin as a growth factor. Pedi-atr Res 1985;19:879–886.

    Article  CAS  Google Scholar 

  151. Susa JB, Schwartz R. Effects of hyperinsulinemia in the primate fetus. Diabetes 1985;34:36–41.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gruppuso, P.A. (1991). Insulin: Biochemical and Physiological Aspects. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics