Skip to main content

Abstract

Rapid growth in the human occurs during the fetal, infant, and latter pubertal stages of development. During these phases of growth, changes occur in the chemical and biochemical composition of the body and in its physiological functions. Growth of the fetus, in its protective intrauterine environment, is determined by its genetic potential and is influenced by the nutritional, hormonal, and health status of the mother. Most biochemical and physiological development studies of the fetus in utero have examined changes associated with the transition from in utero to the free-living neonate and the response to improvements in the clinical care of the preterm neonate. There is a body of chemical composition studies of fetal growth and development that contains data useful as standards for nutritional care of the preterm neonate. These data were obtained from whole body chemical analyses of the human fetus and neonate. The studies contain information about the influence of gestational age and maternal nutritional status on the chemical composition of the fetus.1–4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fee BA, Weil WB Jr. Body composition of infants of diabetic mothers by direct analysis. Ann NY Acad Sci 1963;110:869–897.

    Article  PubMed  CAS  Google Scholar 

  2. Widdowson EM, Dickerson JWT. Chemical composition of the body. In Comar CL, Bronner F, eds: Mineral Metabolism, Vol. 2. Orlando: Academic Press, 1972; 1–247.

    Google Scholar 

  3. Apte SV, Iyengar L. Composition of the human foetus. Br J Nutr 1972;27:305–312.

    Article  PubMed  CAS  Google Scholar 

  4. Ziegler EE, O’Donnell AM, Nelson SE, et al. Body composition of the reference fetus. Growth 1976;40: 329–341.

    PubMed  CAS  Google Scholar 

  5. Moulton CR. Age and chemical development in mammals. J Biol Chem 1923;57:79–97.

    CAS  Google Scholar 

  6. Spray CM, Widdowson EM. The effect of growth and development on the composition of mammals. Br J Nutr 1950;4:332–353.

    Article  PubMed  CAS  Google Scholar 

  7. Brozek J, Henschel A, eds. Techniques for Measuring Body Composition. Washington, DC: National Academy Press, 1961.

    Google Scholar 

  8. Brozek J, ed. Body composition. Ann NY Acad Sci 1963;110:1–1018.

    Google Scholar 

  9. Brozek J, ed. Human Body Composition: Approaches and Applications. New York: Pergamon, 1965.

    Google Scholar 

  10. National Academy of Sciences. Body Composition in Animals and Man. Washington, DC: National Academy Press, 1968.

    Google Scholar 

  11. Garrow JS. New approaches to body composition. Am J Clin Nutr 1982;35:1152–1158.

    PubMed  CAS  Google Scholar 

  12. Lohman TG. Research in progress validation of laboratory methods of assessing body composition. Med Sci Sports Exerc 1984;16:596–603.

    PubMed  CAS  Google Scholar 

  13. Forbes GB. Growth, aging, nutrition, and activity. In: Human Body Composition. New York: Springer-Verlag, 1987.

    Chapter  Google Scholar 

  14. Lukaski HC. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr 1987;46:537–556.

    PubMed  CAS  Google Scholar 

  15. Sheng H-P. Methodologies for measuring body composition in humans. In: Designing Foods. Animal Product Options in the Marketplace. Washington, DC: National Academy Press. 1988;242–250.

    Google Scholar 

  16. Brozek J, Grande F, Anderson JT, et al. Densitometrie analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 1963; 110: 113–140.

    Article  PubMed  CAS  Google Scholar 

  17. Behnke AR, Feen BG, Welham WC. The specific gravity of healthy men: body weight and volume as an index to obesity. JAMA 1942;118:495–498.

    Article  Google Scholar 

  18. Moore FD, Olesen KH, McMurrey JD, et al. The Body Cell Mass and Its Supporting Environment. Philadelphia: Saunders, 1963.

    Google Scholar 

  19. Fomon SJ. Body composition of the male reference infant during the first year of life. Pediatrics 1967;40: 863–870.

    PubMed  CAS  Google Scholar 

  20. Fomon SJ, Haschke F, Ziegler EE, et al. Body composition of reference children from birth to age 10 years. Am J Clin Nutr 1982;35:1169–1175.

    PubMed  CAS  Google Scholar 

  21. Lesser GT, Zak G. Measurement of total body fat in man by the simultaneous absorption of two inert gases. Ann NY Acad Sci 1963;110:40–54.

    Article  PubMed  CAS  Google Scholar 

  22. Mettau JW, Degenhart HJ, Viser HKA. Measurement of total body fat in newborns and infants by absorption and desorption of nonradioactive xenon. Pediatr Res 1977;11:1097–1101.

    Article  PubMed  CAS  Google Scholar 

  23. Kehayias JJ, Ellis KJ, Cohn SH, et al. Use of pulsed neutron generator for in vivo measurement of body carbon. In Ellis KJ, Yasumura S, Morgan WD, eds: In Vivo Body Composition Studies. London: Institute of Physical Sciences in Medicine, 1987;427–435.

    Google Scholar 

  24. Wedgwood RJ. Inconstancy of the lean body mass. Ann NY Acad Sci 1963;110:141–152.

    Article  PubMed  CAS  Google Scholar 

  25. Gnaedinger RH, Reineke EP, Pearson AM, et al. Determination of body density by air displacement, helium dilution, and underwater weighing. Ann NY Acad Sci 1963;110:96–108.

    Article  PubMed  CAS  Google Scholar 

  26. Garn SM, Nolan P Jr. A tank to measure body volume by water displacement (BOVOTA). Ann NY Acad Sci 1963;110:91–95.

    Article  PubMed  CAS  Google Scholar 

  27. Garrow JS, Stalley S, Diethelm R, et al. A new method for measuring the body density of obese adults. Br J Nutr 1979;42:173–183.

    Article  PubMed  CAS  Google Scholar 

  28. Fomon SJ, Jensen RL, Owen GM. Determination of body volume of infants by a method of helium displacement. Ann NY Acad Sci 1963;110:80–90.

    Article  PubMed  CAS  Google Scholar 

  29. Falkner F. An air displacement method of measuring body volume in babies: a preliminary communication. Ann NY Acad Sci 1963;110:75–79.

    Article  PubMed  CAS  Google Scholar 

  30. Friis-Hansen B. The body density of newborn infants. Acta Paediatr 1963;52:513–521.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor A, Aksoy Y, Scopes JW, et al. Development of an air displacement method for whole body volume measurement of infants. J Biomed Eng 1985;7:9–17.

    Article  PubMed  CAS  Google Scholar 

  32. Dell RB, Aksoy Y, Kashyap S, et al. Relationship between density and body weight in prematurely born infants receiving different diets. In Ellis KJ, Yasumura S, Morgan WD, eds: In Vivo Body Composition Studies. London: The Institute of Physical Medicine, 1987;91–97.

    Google Scholar 

  33. Sheng H-P, Dang T, Adolph AL, et al. Infant body volume measurement by acoustic plethysmography. In Ellis KJ, Yasumura S, Morgan WD, eds: In Vivo Body Composition Studies. London: The Institute of Physical Medicine, 1987;415–420.

    Google Scholar 

  34. Sheng H-P, Adolph AL, Smith EO, et al. Body volume and fat-free mass determinations by acoustic plethysmography. Pediatr Res 1988;24:85–89.

    Article  PubMed  CAS  Google Scholar 

  35. Siri WE. Body composition from fluid spaces and density: analysis of methods. In Brozek J, Hanschel A, eds: Techniques for Measuring Body Compositions. Washington, DC: National Academy Press, 1961; 223–244.

    Google Scholar 

  36. Pearson AM, Purchas RW, Reineke EP. Theory and potential usefulness of body density as a predictor of body composition. In: Body Composition in Animals and Man. Washington, DC: National Academy Press, 1968;153–169.

    Google Scholar 

  37. Sheng H-P, Huggins RA. A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr 1979;32:630–647.

    PubMed  CAS  Google Scholar 

  38. Cohn SH, Vaswani AN, Yasumura S, et al. Improved models for determination of body fat by in vivo neutron activation. Am J Clin Nutr 1984;40:255–259.

    PubMed  CAS  Google Scholar 

  39. Pace N, Rathbun EN. Studies on body composition. III. The body water and chemically combined nitrogen content in relation to fat content. J Biol Chem 1945;158:685–691.

    CAS  Google Scholar 

  40. Shields RG Jr, Mahan DC, Graham PL. Changes in swine body composition from birth to 145 kg. J Anim Sci 1983;57:43–54.

    PubMed  CAS  Google Scholar 

  41. Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics 1961;28:169–181.

    PubMed  CAS  Google Scholar 

  42. Schoeller DA, van Santen E, Peterson DW, et al. Total body water measurement in humans with 18O and 2H labeled water. Am J Clin Nutr 1980;33:2686–2693.

    PubMed  CAS  Google Scholar 

  43. Trowbridge FL, Graham GG, Wong WW, et al. Body water measurements in premature and older infants using H2 18O isotopic determinations. Pediatr Res 1984;18:524–527.

    Article  PubMed  CAS  Google Scholar 

  44. McManus WR, Prichard RK, Baker C, et al. Estimation of water content by tritium dilution of animals subjected to rapid live-weight changes. J Agric Sci Camb 1969;72:31–40.

    Article  Google Scholar 

  45. Sheng H-P, Huggins RA. Tritiated water as a measure of body water in immature rats growing at different rates. J Appl Physiol 1989;66:476–480.

    PubMed  CAS  Google Scholar 

  46. Meneely GR, Heyssel RM, Ball COT, et al. Analysis of factors affecting body composition determined from potassium content in 915 normal subjects. Ann NY Acad Sci 1963;110:271–281.

    Article  PubMed  CAS  Google Scholar 

  47. Forbes GB, Hursh JB. Age and sex trends in lean body mass calculated from K40 measurements: with a note on the theoretical basis for the procedure. Ann NY Acad Sci 1963;110:255–263.

    Article  PubMed  CAS  Google Scholar 

  48. Spady DW, Schiff D, Szymanski WA. A description of the changing body composition of the growing premature infant. J Pediatr Gastroenterol Nutr 1987;6:730–738.

    Article  PubMed  CAS  Google Scholar 

  49. Shepherd RW, Oxborough DB, Holt TL, et al. Longitudinal study of the body composition of weight gain in exclusively breast-fed and intake-measured whey-based formula-fed infants to age 3 months. J Pediatr Gastroenterol Nutr 1988;7:732–739.

    Article  PubMed  CAS  Google Scholar 

  50. Forbes GB, Lewis AM. Total sodium, potassium, and chloride in adult man. J Clin Invest 1956;35:596–600.

    Article  PubMed  CAS  Google Scholar 

  51. Burmeister W, Romahn A. Potassium content in full-term and premature babies: energetics for the synthesis of body cell mass. In Linneweh F, ed: Current Aspects of Perinatology and Physiology of Children. New York: Springer-Verlag, 1973;139–156.

    Chapter  Google Scholar 

  52. Hager A, Sjostrom L, Arvidsson B, et al. Body fat and adipose tissue cellularity in infants: a longitudinal study. Metabolism 1977;26:607–614.

    Article  PubMed  CAS  Google Scholar 

  53. Cohn SH, Vaswani AN, Yasumura S, et al. Assessment of cellular mass and lean body mass by noninvasive nuclear techniques. J Lab Clin Med 1985; 105:305–311.

    PubMed  CAS  Google Scholar 

  54. Aloia JF, Cohn SH, Ross P, et al. Skeletal mass in postmenopausal women. Am J Physiol 1978;4:E82–E87.

    Google Scholar 

  55. Aloia JF, Ross P, Vaswani A, et al. Rate of bone loss in postmenopausal and osteoporotic women. Am J Physiol 1982;242:E82–E86.

    PubMed  CAS  Google Scholar 

  56. McNeill KG, Mernagh JR, Jeejeebhoy KN, et al. In vivo measurements of body protein based on the determination of nitrogen by prompt gamma analysis. Am J Clin Nutr 1979;32:1955–1961.

    PubMed  CAS  Google Scholar 

  57. Cohn SH, Vaswani AN, Vartsky D. In vivo quantification of body nitrogen for nutritional assessment. Am J Clin Nutr 1982;35:1186–1191.

    PubMed  CAS  Google Scholar 

  58. Harrison GG, Van Itallie TB. Estimation of body composition: a new approach based on electromagnetic principles. Am J Clin Nutr 1982;35:1176–1179.

    PubMed  CAS  Google Scholar 

  59. Lukaski HC, Johnson PE, Bolonchuk WW, et al. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985;41:810–817.

    PubMed  CAS  Google Scholar 

  60. Segal KR, Gutin B, Presta E, et al. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol 1985; 58:1565–1571.

    PubMed  CAS  Google Scholar 

  61. Cochran WJ, Klish WJ, Wong WW, et al. Total body electrical conductivity used to determine body composition in infants. Pediatr Res 1986;20:561–564.

    Article  PubMed  CAS  Google Scholar 

  62. Fiorotto ML, Cochran WJ, Funk RC, et al. Total body electrical conductivity measurements: effects of body composition and geometry. Am J Physiol 1987;252: R794-R800.

    PubMed  CAS  Google Scholar 

  63. Cohn SH. How valid are bioelectric impedance measurements in body composition studies. Am J Clin Nutr 1985;42:889–890.

    PubMed  CAS  Google Scholar 

  64. Tanner JM. Standards for birth weight or intra-uterine growth. Pediatrics 1970;46:1–6.

    PubMed  CAS  Google Scholar 

  65. Keys A, Fidanza F, Karvonen M J, et al. Indices of relative weight and obesity. J Chronic Dis 1972;25: 329–343.

    Article  PubMed  CAS  Google Scholar 

  66. Rolland-Cachera MF, Sempe M, Guilloud-Bataille M, et al. Adiposity indices in children. Am J Clin Nutr 1982;36:178–184.

    PubMed  CAS  Google Scholar 

  67. Cronk CE, Roche AF. Race- and sex-specific reference data for triceps and subscapular skinfolds and weight/stature. Am J Clin Nutr 1982;35:347–354.

    PubMed  CAS  Google Scholar 

  68. Forbes GB. Methods for determining composition of the human body. Pediatrics 1962;29:477–494.

    PubMed  CAS  Google Scholar 

  69. Southgate DAT, Hey EN. Chemical and biochemical development of the human fetus. In Roberts DF, Thomson AM, eds: Biology of Human Fetal Growth. New York: Halsted Press, 1976; 195–209.

    Google Scholar 

  70. Garn SM. Roentgenogrammetric determinations of body composition. Hum Biol 1957;29:337–353.

    PubMed  CAS  Google Scholar 

  71. Borkan GA, Hults DE, Cardarelli J, et al. Comparison of ultrasound and skinfold measurements in assessment of subcutaneous and total fatness. Am J Phys Anthropol 1982;58:307–313.

    Article  PubMed  CAS  Google Scholar 

  72. Conway JM, Norris KH, Bodwell CE. A new approach for the estimation of body composition: infrared interactance. Am J Clin Nutr 1984;40:1123–1130.

    PubMed  CAS  Google Scholar 

  73. Moore FD, Lister J, Boyden CM, et al. The skeleton as a feature of body composition. Hum Biol 1968;40: 135–188.

    PubMed  CAS  Google Scholar 

  74. Durnin JVGA, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr 1967;21:681–689.

    Article  PubMed  CAS  Google Scholar 

  75. Lohman TG. Skinfolds and body density and their relation to body fatness: a review. Hum Biol 1981;53: 181–225.

    PubMed  CAS  Google Scholar 

  76. Durnin JVGA, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974;32:77–97.

    Article  PubMed  CAS  Google Scholar 

  77. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr 1978;40: 497–504.

    Article  PubMed  CAS  Google Scholar 

  78. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Men Sci Sports Exerc 1980;12:175–182.

    CAS  Google Scholar 

  79. Jackson AS, Pollock ML. Prediction accuracy of body density, lean body weight and total body volume equations. Med Sci Sports Exerc 1977;9:197–201.

    CAS  Google Scholar 

  80. Brook CGD. Determination of body composition of children from skinfold measurements. Arch Dis Child 1971;46:182–184.

    Article  PubMed  CAS  Google Scholar 

  81. Barter J, Forbes GB. Correlation of potassium-40 data with anthropometric measurements. Ann NY Acad Sci 1963;110:264–270.

    PubMed  CAS  Google Scholar 

  82. Borkan GA, Hults DE, Gerzof SG, et al. Relationships between computed tomography tissue areas, thicknesses and total body composition. Ann Hum Biol 1983;10:537–546.

    Article  PubMed  Google Scholar 

  83. Sjostrom L, Kvist H, Cederblad A, et al. Determination of total adipose tissue and body fat in women by computed tomography, 40K, and tritium. Am J Physiol 1986;250:E736-E745.

    PubMed  CAS  Google Scholar 

  84. Gotfredsen A, Jensen J, Borg J, et al. Measurement of lean body mass and total body fat using dual photon absorptiometry. Metabolism 1986;35:88–93.

    Article  PubMed  CAS  Google Scholar 

  85. Fuller MF, Foster MA, Hutchison JMS. Estimation of body fat by nuclear magnetic resonance imaging. Proc Nutr Soc 1985;44:108A.

    Google Scholar 

  86. Lewis DS, Rollwitz WL, Bertrand HA, et al. Use of NMR for measurement of total body water and estimation of body fat. J Appl Physiol 1986;60:836–840.

    Article  PubMed  CAS  Google Scholar 

  87. Steichen JJ, Asch PAS, Tsang RC. Bone mineral content measurement in small infants by single-photon absorptiometry: current méthodologie issues. J Pedi-atr 1988;113:181–187.

    CAS  Google Scholar 

  88. Wright LL, Glade MJ, Gopal J. The use of transmission ultrasonics to assess bone status in the human newborn. Pediatr Res 1987;22:541–544.

    Article  PubMed  CAS  Google Scholar 

  89. Gotfredsen A, Petersen A, Hassager C, et al. Body composition in infants by dual-photon 153-Gd absorptiometry (DPA), In Ellis KJ, Yasumura S, Morgan WD, eds: In Vivo Body Composition Studies. The Institute of Physical Medicine: London, 1987;83–86.

    Google Scholar 

  90. Hytten FE, Leitch I. The Physiology of Human Pregnancy. London, Blackwell Scientific Publications, 1971.

    Google Scholar 

  91. Farr V. Skinfold thickness as an indication of maturity of the newborn. Arch Dis Child 1966;41:301–308.

    Article  PubMed  CAS  Google Scholar 

  92. Whitelaw A. Subcutaneous fat measurement as an indication of nutrition of the fetus and newborn. In Visser HKA, ed: Nutrition and Metabolism of the Fetus and Infant. Boston: Martinus Nijhoff, 1979; 131–143.

    Chapter  Google Scholar 

  93. McGowan A, Jordan M, MacGregor J. Skinfold thickness in neonates. Biol Neonate 1975;25:66–84.

    Google Scholar 

  94. Oakley JR, Parsons RJ, Whitelaw AGL. Standards for skinfold thickness in British newborn infants. Arch Dis Child 1977;52:287–290.

    Article  PubMed  CAS  Google Scholar 

  95. Cassady G, Milstead RR. Antipyrine space studies and cell water estimates in infants of low birth weight. Pediatr Res 1971;5:673–682.

    Article  Google Scholar 

  96. Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child 1951;26:205–214.

    Article  PubMed  CAS  Google Scholar 

  97. Sheng HP, Huggins RA. Body cell mass and lean body mass in the growing beagle. Proc Soc Exp Biol Med 1973;142:175–180.

    PubMed  CAS  Google Scholar 

  98. Dickerson JWT. Changes in the composition of the human femur during growth. Biochem J 1962;82:56–61.

    PubMed  CAS  Google Scholar 

  99. Trotter M, Peterson RR. Weight of bone during the fetal period. Growth 1969;33:167–184.

    PubMed  CAS  Google Scholar 

  100. Minton SD, Steichen JJ, Tsang RC. Bone mineral content in term and preterm appropriate-for-gestational-age infants. J Pediatr 1979;95:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  101. Garn SM, Pesick SD. Relationship between various maternal body mass measures and size of the newborn. Am J Clin Nutr 1982;36:664–668.

    PubMed  CAS  Google Scholar 

  102. Metcoff J. Association of fetal growth with maternal nutrition. In Faulkner F, Tanner JM, eds: Human Growth: Principles and Prenatal Growth, Vol. 1. New York: Plenum, 1978;415–460.

    Google Scholar 

  103. Frisancho AR, Klayman JE, Matos J. Influence of maternal nutritional status on prenatal growth in a Peruvian urban population. Am J Phys Anthropol 1977;46:265–274.

    Article  PubMed  CAS  Google Scholar 

  104. Garrow JS, Fletcher K, Halliday D. Body composition in severe infantile malnutrition. J Clin Invest 1965;44: 417–425.

    Article  PubMed  CAS  Google Scholar 

  105. Hingson R, Alpert JJ, Day N, et al. Effects of maternal drinking and marijuana use on fetal growth and development. Pediatrics 1982;70:539–546.

    PubMed  CAS  Google Scholar 

  106. Harrison GG, Branson RS, Vaucher YE. Association of maternal smoking with body composition of the newborn. Am J Clin Nutr 1983;38:757–762.

    PubMed  CAS  Google Scholar 

  107. Spady DW, Atrens MA, Szymanski WA. Effects of mother’s smoking on their infants’ body composition as determined by total body potassium. Pediatr Res 1986;20:716–719.

    Article  PubMed  CAS  Google Scholar 

  108. Cheek DB, Wishart J, MacLennan AH, et al. Cell hydration in the normally grown, the premature and the low weight for gestational age infant. Early Hum Dev 1984;10:75–84.

    Article  PubMed  CAS  Google Scholar 

  109. McCance RA, Widdowson EM. Normal renal function in the first two days of life. Arch Dis Child 1954; 29:488–494.

    Article  PubMed  CAS  Google Scholar 

  110. Nicolopoulos DA, Smith CA. Metabolic aspects of idiopathic respiratory distress (hyaline membrane syndrome) in newborn infants. Pediatrics 1961;28:206–222.

    PubMed  CAS  Google Scholar 

  111. Auld PAM, Bhangananda P, Mehta S. The influence of an early caloric intake with I-V glucose on catabolism of premature infants. Pediatrics 1966;37:592–596.

    PubMed  CAS  Google Scholar 

  112. Fenn WO. The deposition of potassium and phosphate with glycogen in rat livers. J Biol Chem 1939; 128: 297–307.

    CAS  Google Scholar 

  113. Forbes GB, Drenick EJ. Loss of body nitrogen on fasting. Am J Clin Nutr 1979;32:1570–1574.

    PubMed  CAS  Google Scholar 

  114. Seward JF, Serdula MK. Infant feeding and infant growth. Pediatrics 1984;74:(suppl) 728–762.

    PubMed  CAS  Google Scholar 

  115. Butte NF, Garza C, Smith EO, et al. Human milk intake and growth in exclusively breast-fed infants. J Pediatr 1984;104:187–195.

    Article  PubMed  CAS  Google Scholar 

  116. Forsum E, Sadurskis A. Growth, body composition and breast milk intake of Swedish infants during early life. Early Hum Dev 1986;14:121–129.

    Article  PubMed  CAS  Google Scholar 

  117. Stearns G. The mineral metabolism of normal infants. Physiol Rev 1939;19:415–438.

    CAS  Google Scholar 

  118. Greer FR, Searcy JE, Levin RS, et al. Bone mineral content and serum 25-hydroxyvitamin D concentration in breast-fed infants with and without supplemental vitamin D. J Pediatr 1981;98:696–701.

    Article  PubMed  CAS  Google Scholar 

  119. Steichen JJ, Tsang RC. Bone mineralization and growth in term infants fed soy-based or cow milk-based formula. J Pediatr 1987;110:687–692.

    Article  PubMed  CAS  Google Scholar 

  120. Hillman LS, Chow W, Salmons SS, et al. Vitamin D metabolism, mineral homeostasis, and bone mineralization in term infants fed human milk, cow milk-based formula, or soy-based formula. J Pediatr 1988; 112: 864–874.

    Article  PubMed  CAS  Google Scholar 

  121. v.d. Wagen A, Okken A, Zweens J, et al. Composition of postnatal weight loss and subsequent weight gain in small for dates newborn infants. Acta Paediatr (Stockh) 1985;74:57–61.

    Article  Google Scholar 

  122. Kagan BM, Stanincova V, Felix NS, et al. Body composition of premature infants: relation to nutrition. Am J Clin Nutr 1972;25:1153–1164.

    PubMed  CAS  Google Scholar 

  123. Whyte RK, Haslam R, Vilainic C, et al. Energy balance and nitrogen balance in growing low birth weight infants fed human milk or formula. Pediatr Res 1983; 17:891–898.

    Article  PubMed  CAS  Google Scholar 

  124. Reichman B, Chessex P, Putet G, et al. Diet, fat accretion, and growth in premature infants. N Engl J Med 1981;305:1495–1500.

    Article  PubMed  CAS  Google Scholar 

  125. Greer FR, Lane J, Weiner S, et al. An accurate and reproducible absorptiometric technique for determining bone mineral content in newborn infants. Pediatr Res 1983;17:259–262.

    Article  PubMed  CAS  Google Scholar 

  126. Minton SD, Steichen JJ, Tsang RC. Decreased bone mineral content in small-for-gestational age infants compared with appropriate for gestational-age infants: normal serum 25-hydroxyvitamin D and decreasing parathyroid hormone. Pediatrics 1983;71: 383–388.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sheng, HP., Nichols, B.L. (1991). Body Composition of the Neonate. In: Cowett, R.M. (eds) Principles of Perinatal-Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0400-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0400-5_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0402-9

  • Online ISBN: 978-1-4684-0400-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics