Skip to main content

High Energy Particle Acceleration by a Laser Beatwave

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

Parallel intense laser beams, ωo/ ko and ω1, k1 shone on an underdense plasma with frequency separation equal to the plasma frequency, ωp, are capable of creating coherent large electrostatic fields and accelerating particles to high energies in large flux. The photon beatwave excites, through forward Raman scattering, a large amplitude plasma wave whose velocity is (ωo - ω1)/(ko — k1), close to c. The plasma wave attains electrostatic field strengths of Ez ≃ mcωp/e. This intense logitudinal field may be used to accelerate either preaccelerated charged particles, or plasma electrons.

Extensive computer simulations have been carried out to pinpoint the physics. At present, results are limited to one-dimensional relativistic and electromagnetic models. These code runs address questions of laser intensity threshold for particle trapping, temperature and density gradient effects, Raman Forward Scattering (RFS) and Raman Backward Scattering (RBS), the optical mixing mechanisms, wave synchronism and streaming instabilities. The simulations show the Beatwave Accelerator to be a viable method for obtaining the predicted electrostatic accelerating fields. Wave synchronism can be maintained and streaming instabilities suppressed by the proper choice of laser beatwave intensity. Optical mixing can be used to lower the RFS instability threshold by two orders of magnitude. If two- and three-dimensional instabilities can be addressed successfully, acceleration of plasma electrons or preaccelerated charged particles to TeV energies in short distances appears feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  2. T. Tajima and J. M. Dawson, IEEE Trans. Nuc. Sci. NS-28, 3416 (1981).

    Article  ADS  Google Scholar 

  3. N. Kroll, A. Ron, and N. Rostoker, Phys. Rev. Lett. 13, 83 (1964).

    Article  ADS  Google Scholar 

  4. B. I. Cohen, A. N. Kaufman, and K. M. Watson, Phys. Rev. Lett. 29, 581 (1972).

    Article  ADS  Google Scholar 

  5. M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972).

    Article  ADS  Google Scholar 

  6. C. Joshi, T. Tajima, J. M. Dawson, H. A. Baldis, and N. A. Ebrahim, Phys. Rev. Lett. 47, 1285 (1981).

    Article  ADS  Google Scholar 

  7. Y. R. Shen and N. Bloembergen, Phys. Rev. 137, A1787 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).

    MATH  Google Scholar 

  9. D. J. Sullivan and B. B. Godfrey, in Laser Acceleration of Particles, edited by P. J. Channeil, (AIP Conference Proceedings, No. 91, New York, 1982), p. 43.

    Google Scholar 

  10. D. J. Sullivan and B. B. Godfrey, IEEE Trans. Nuc. Sci. NS-28, 3395 (1981).

    Article  ADS  Google Scholar 

  11. C. Joshi, in Laser Acceleration of Particles, edited by P. J. Channell, (AIP Conference Proceedings, No. 91, New York, 1982), p. 28.

    Google Scholar 

  12. K. Estabrook, W. L. Kruer, and B. F. Lasinski, Phys. Rev. Lett. 45, 1399 (1980).

    Article  ADS  MATH  Google Scholar 

  13. D. Eimerl, R. S. Hargrove, and J. A. Pasiner, Phys. Rev. Lett. 46, 651 (1981).

    Article  ADS  Google Scholar 

  14. C.S. Gardner, Phys. Fluids 6, 839 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  15. Sometimes vtr is defined as √2 times the value of Eq. (17).

    Google Scholar 

  16. J. M. Dawson and R. Shanny, Phys. Fluids 11, 1506 (1968).

    Article  ADS  MATH  Google Scholar 

  17. These criteria were put forward by R. Pantell at the Laser Particle Accelerator Workshop (LANL, February 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Sullivan, D.J., Tajima, T. (1984). High Energy Particle Acceleration by a Laser Beatwave. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics