Skip to main content

Punctuated versus Gradual Mode of Evolution

A Reconsideration

  • Chapter
Evolutionary Biology

Abstract

The concept of punctuated equilibria (Eldredge and Gould, 1972; Gould and Eldredge, 1977) continues to attract the attention of evolutionary biologists and paleontologists (Bock, 1979; Stanley, 1979; Levinton and Simon, 1980; Hoffman, 1981; Mahé and Devillers, 1981; Schopf, 1981a). This is so not only because of its heterodox appearance, contradicting the paleontologic folk wisdom that views species as transforming gradually into new species. The attractiveness of punctuationalism is first of all due to its far-reaching implications for the study of macroevolution, since dismissal of the old gradualistic concept forces us to invoke some new biologic principles and/or mechanisms to account for macroevolutionary change. Most commonly, epigenetics and development are referred to in this context (Gould, 1980, 1982; Alberch, 1982; Maderson et al, 1982; Rachootin and Thomson, 1981). To explain large-scale evolutionary trends the theory of species selection has been put forth. It claims that some major features of the biosphere (e.g., numerical prevalence of sexual over asexual species, competitive exclusion of major taxa in geologic time, etc.) are not to be explained by the evolution of populations through natural selection, but rather by the differential extinction and speciation rates in various lineages (Stanley, 1975; 1979; Gould and Eldredge, 1977; Vrba, 1980; Gilinsky, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberch, P., 1982, Developmental constraints in evolutionary processes, in: Evolution and Development (J. T. Bonner, ed.), pp. 313–332, Springer, Heidelberg.

    Google Scholar 

  • Albers, J., 1952, Taxonomie und Entwicklung einiger Arten vonVaginulina d’Orb. aus dem Barreme bei Hannover (Foram.), Mitt. Geol. Staatsints. Hamburg 21:75–112.

    Google Scholar 

  • Anderson, S., and Evensen, M. K., 1978, Randomness in allopatric speciation, Syst. Zool. 27:421–430.

    Google Scholar 

  • Bartenstein, H., and Bettenstaedt, F., 1962, Marine Unterkreide (Boreal und Tethys), in: Leitfossilien der Mikropaläontologie (Arbeitskreis deutsch. Mikropal., ed.), pp. 225–297, Berlin.

    Google Scholar 

  • Bettenstaedt, F., 1952, Stratigraphisch wichtige Foraminiferen-Arten aus dem Barreme vorwiegend Nordwest-Deutschlands, Senckenbergiana 33:263–295.

    Google Scholar 

  • Bettenstaedt, F., 1958, Phylogenetische Beobachtungen in der Mikropaläontologie, Palaeontol. Z. 32:115–140.

    Google Scholar 

  • Bettenstaedt, F., 1962, Evolutionsvorgänge bei fossilen Foraminiferen, Mitt. Geol. Staatsinst. Hamburg 31:385–460.

    Google Scholar 

  • Bock, W. J., 1979, The synthetic explanation of macroevolutionary change—A reductionist approach, Bull. Carnegie Mus. Nat. Hist. 13:20–69.

    Google Scholar 

  • Boucot, A. J., 1978, Community evolution and rates of cladogenesis, Evol. Biol. 11:545–655.

    Google Scholar 

  • Brinkmann, R., 1929, Statistisch-biostratigraphische Untersuchungen an mitteljurassischen Ammoniten über Artbegriff und Stammesentwicklung, Abh. Ges. Wiss. Göttingen, Math.-Phys. Kl. N.F. 13:1–249.

    Google Scholar 

  • Bush, G. L., 1975, Modes of animal speciation, Annu. Rev. Ecol. Syst. 6:339–364.

    Google Scholar 

  • Carson, H. L., 1975, The genetics of speciation at the diploid level, Am. Nat. 109:83–92.

    Google Scholar 

  • Cisne, J. L., Chandlee, G. O., Rabe, B. D., and Cohen, J. A., 1980, Geographic variation and episodic evolution in an Ordovician trilobite, Science 209:925–927.

    PubMed  CAS  Google Scholar 

  • Connell, J. H., 1978, Diversity in tropical rainforests and coral reefs, Science 199:1302–1310.

    PubMed  CAS  Google Scholar 

  • Connell, J. H., 1980, Diversity and the coevolution of competitors, or the ghost of competition past, Oikos 35:131–138.

    Google Scholar 

  • Cooper, R. A., 1973, Taxonomy and evolution of Isograptus Moberg in Australasia, Palaeontology 16:45–115.

    Google Scholar 

  • Cracraft, J., and Eldredge, N. (eds.), 1979, Phylogenetic Analysis and Paleontology, Columbia University Press, New York.

    Google Scholar 

  • Cronin, J. E., Boaz, N. T., Stringer, C. B., and Rak, Y., 1981, Tempo and mode in hominid evolution, Nature 292:113–122.

    PubMed  CAS  Google Scholar 

  • Delson, E., 1981, Paleoanthropology: Pliocene and Pleistocene human evolution, Paleobiology 7:298–305.

    Google Scholar 

  • Dzik, J., and Trammer, J., 1980, Gradual evolution of conodontophorids in the Polish Triassic, Acta Palaeont. Pol. 25:55–89.

    Google Scholar 

  • Eldredge, N., 1971, The allopatric model and phylogeny in Paleozoic invertebrates, Evolution 25:156–167.

    Google Scholar 

  • Eldredge, N., 1972, Systematics and evolution ofPhacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) in the Middle Devonian of North America, Bull. Am. Mus. Nat. Hist. 47:45–114.

    Google Scholar 

  • Eldredge, N., 1979, Alternative approaches to evolutionary theory, Bull. Carnegie Mus. Nat. Hist. 13:7–19.

    Google Scholar 

  • Eldredge, N., and Cracraft, J., 1980, Phylogeneric Patterns and the Evolutionary Process, Columbia University Press, New York.

    Google Scholar 

  • Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology (T. J. M. Schopf, ed.), pp. 82–115, Freeman, San Francisco.

    Google Scholar 

  • Eldredge, N., and Gould, S. J., 1977, Evolutionary models and biostratigraphic strategies, in: Concepts and Methods of Biostratigraphy (E. G. Kauffman and J. E. Hazel, eds.), pp. 25–40, Dowde, Hutchinson & Ross, Stroudsburg.

    Google Scholar 

  • Eldredge, N., and Tattersall, I., 1975, Evolutionary models, phylogenetic reconstruction, and another look at hominid phylogeny, Contrib. Primatol. 5:218–242.

    PubMed  CAS  Google Scholar 

  • Endler, J. A., 1977, Geographic Variation, Speciation, and Clines, Princeton University Press, Princeton.

    Google Scholar 

  • Flessa, K. W., and Bray, R. G., 1977, On the measurement of size-independent morphological variability: An example using successive populations of a Devonian spiriferid brachiopod, Paleobiology 3:350–359.

    Google Scholar 

  • Frazzetta, T., 1970, From hopeful monsters to bolyerine snakes, Am. Nat. 104:55–72.

    Google Scholar 

  • Gecow, A., 1975, A cybernetical model of improving and its application to the evolution and ontogenesis description, Presented at 5th Int. Bio.-Math. Congress, Paris, September 1975.

    Google Scholar 

  • Gilinsky, N. L., 1981, Stabilizing species selection in the Archaeogastropoda, Paleobiology 7:316–331.

    Google Scholar 

  • Gingerich, P. D., 1976, Paleontology and phylogeny: Patterns of evolution at the species level in early Tertiary mammals, Am. J. Sci. 276:1–28.

    Google Scholar 

  • Gingerich, P. D., 1977, Patterns of evolution in the mammalian fossil record, in: Patterns of Evolution (A. Hallam, ed.), pp. 469–500, Elsevier, Amsterdam.

    Google Scholar 

  • Gould, S. J., 1969, An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda, Bull. Mus. Comp. Zool. Harv. Univ. 138:407–532.

    Google Scholar 

  • Gould, S. J., 1980, Is a new and general theory of evolution emerging?, Paleobiology 6:119–130.

    Google Scholar 

  • Gould, S. J., 1982, Change in developmental timing as a mechanism of macroevolution, in: Evolution and Development (J. T. Bonner, ed.), pp. 333–346, Springer, Heidelberg.

    Google Scholar 

  • Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: The tempo and mode of evolution reconsidered, Paleobiology 3:115–151.

    Google Scholar 

  • Gould, S. J., and Lewontin, R. C., 1979, The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist program, Proc. R. Soc. Lond. B 205:581–598.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., Raup, D. M., Sepkoski, J. J., Schopf, T. J. M., and Simberloff, D. S., 1977, The shape of evolution: A comparison of real and random clades, Paleobiology 3:23–40.

    Google Scholar 

  • Grabert, B., 1959, Phylogenetische Untersuchungen an Gaudryina und Spiroplectinata (Foram.) besonders aus dem nordwestdeutschen Apt und Alb, Abh. Senckenb. Naturforsch. Ges. 498:1–71.

    Google Scholar 

  • Gradstein, F. M., 1974, Mediterranean PlioceneGloborotalia—A biometrical approach, Utrecht Micropaleontal. Bull. 7:1–128.

    Google Scholar 

  • Greenwood, P. H., 1974, The cichlid fishes of Lake Victoria, East Africa: The biology and evolution of a species flock, Bull. Br. Mus. (Nat. Hist.) Zool. (Suppl.) 6:1–134.

    Google Scholar 

  • Greenwood, P. H., 1979, Macroevolution—Myth or reality?, Biol. J. Linn. Soc. 12:293–304.

    Google Scholar 

  • Hallam, A., 1978, How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves, Paleobiology 4:16–25.

    Google Scholar 

  • Harper, C. W., 1975, Origin of species in geologic time: Alternatives to the Eldredge-Gould model, Science 190:47–48.

    Google Scholar 

  • Harper, C. W., 1976, Stability of species in geologic time, Science 192:269.

    Google Scholar 

  • Hennig, W., 1966, Phylogenetic Systematics, University of Illinois Press, Urbana.

    Google Scholar 

  • Hewitt, R. A., and Hurst, J. M., 1977, Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance, Lethaia 10:287–301.

    Google Scholar 

  • Hiltermann, H., and Koch, W., 1950, Taxonomie und Vertikalverbreitung von Bolivinoides- Arten im Senon Nordwestdeutschlands, Geol. Jahrb. 64:595–632.

    Google Scholar 

  • Ho, M.-W., and Saunders, P. T., 1979, Beyond neo-Darwinism-An epigenetic approach to evolution, J. Theor. Biol. 78:573–591.

    PubMed  CAS  Google Scholar 

  • Hoffman, A., 1978, Punctuated-equilibria evolutionary model and paleoecology, Ann. Soc. Géol. Pologne. 48:327–331.

    Google Scholar 

  • Hoffman, A., 1979, Community paleoecology as an epiphenomenal science, Paleobiology 5:357–379.

    Google Scholar 

  • Hoffman, A., 1980, System-analytic conceptual framework for community paleoecology, Ann. Soc. Geol. Pol. 50:161–172.

    Google Scholar 

  • Hoffman, A., 1981, Biological controls of the punctuated versus gradual mode of species evolution, in: International Symposium Concept and Method in Paleontology, (J. Martinell, ed.), pp. 57–63, Universidad de Barcelona, Barcelona.

    Google Scholar 

  • Hoffman, A., and Szubzda-Studencka, B., 1982, Bivalve species duration and ecologic characteristics in the Badenian (Miocene) marine sandy facies of Poland, Neues Jahrb. Geol. Palaeontol. Abh. 163:122–135.

    Google Scholar 

  • Howarth, M. K., 1973, The stratigraphy and ammonite fauna of the Upper Liassic Grey Shales of the Yorkshire Coast, Bull. Br. Mus. (Nat. Hist.) Geol. 24:237–277.

    Google Scholar 

  • Jaanusson, V., 1973, Morphological discontinuities in the evolution of graptolite colonies, in: Animal Colonies (R. S. Boardman, A. H. Cheetham, and W. A. Oliver, eds.), pp. 515–521, Dowden, Hutchinson & Ross, Stroudsburg.

    Google Scholar 

  • Jaanusson, V., 1981, Functional thresholds in evolutionary progress, Lethaia 14:251–260.

    Google Scholar 

  • Jablonski, D., 1980, Apparent versus real biotic effects of transgressions and regressions, Paleobiology 6:397–407.

    Google Scholar 

  • Kellogg, D. E., 1975, The rate of phyletic change in the evolution of Pseudocubus vema (Radiolaria), Paleobiology 1:359–370.

    Google Scholar 

  • Kellogg, D. E., and Hays, J. D., 1975, Microevolutionary patterns in Late Cenozoic Radiolaria, Paleobiology 1:150–160.

    Google Scholar 

  • Kennedy, W. J., 1977,Ammonite evolution, in: Patterns ofEvolution (A. Hallam, ed.), pp. 251- 304, Elsevier, Amsterdam.

    Google Scholar 

  • Kirkpatrick, M., and Selander, R. K., 1979, Genetics of speciation in lake whitefishes in the Allegash Basin, Evolution 33:478–485.

    Google Scholar 

  • Klinger, H. C., and Kennedy, W. J., 1980, Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Texanitinae Collignon, 1948, Ann. S. Afr. Mus. 80:1–357.

    Google Scholar 

  • Koch, C. F., 1980, Bivalve species duration, areal extent and population size in a Cretaceous sea, Paleobiology 6:184–192.

    Google Scholar 

  • Krassilov, V. A., 1978, Organic evolution and natural stratigraphic classification, Lethaia 11:93–104.

    Google Scholar 

  • Kutek, J., and Zeiss, A., 1974, Tithonian-Volgian ammonites from Brzost6wka near Tomasz6w Mazowiecki, Acta Geol. Pol. 24:505–542.

    Google Scholar 

  • Lande, R., 1980a, Genetic variation and genotypic evolution during allopatric speciation, Am. Nat. 116:463–479.

    Google Scholar 

  • Lande, R., 1980b, Macroevolution, by Steven M. Stanley (review), Paleobiology 6:233–238.

    Google Scholar 

  • Larson, A., Wake, D. B., Maxson, L. R., and Highton, R., 1981,A molecular phylogenetic perspective on the origin of morphological novelties in the salamanders of the tribe Plethodontini (Amphibia, Plethodontidae), Evolution 35:405–422.

    Google Scholar 

  • Lerner, I. M., 1954, Genetic Homeostasis, Wiley, New York.

    Google Scholar 

  • Levins, R., 1968, Evolution in Changing Environments, Princeton University Press, Princeton.

    Google Scholar 

  • Levinton, J. S., and Simon, C. M., 1980, A critique of the punctuated equilibria and implications for the detection of speciation in the fossil record, Syst, Zool. 29:130–142.

    Google Scholar 

  • Lewontin, R. C., 1978, Adaptation, Sci. Am. 239:213–230.

    Google Scholar 

  • Liem, K. F., 1974, Evolutionary strategies and morphological innovations: Cichlid pharyngeal jaws, Syst. Zool. 22:425–441.

    Google Scholar 

  • Maderson, P. F. A., Alberch, P., Gould, S. J., Goodwin, B. C., Hoffman, A., Murray, J. D., Raup, D. M., Ricqlès, A. de, Seilacher, A., Wagner, G. P., and Wake, D. B., 1982, Role of development in macroevolutionary change, in: Evolution and Development (J. T. Bonner, ed.), pp. 279–312, Springer, Heidelberg.

    Google Scholar 

  • Mahé, J., and Devillers, C., 1981, Stabilité de l’éspèce et évolution: La théorie de l’équilibre intermittent (“punctuated equilibrium”), Géobios 14:477–491.

    Google Scholar 

  • Makowski, H., 1962, Problem of sexual dimorphism in ammonites, Palaeontol. Pol. 12:1–92.

    Google Scholar 

  • Malinowska, L., 1963, Stratygrafia oksfordu Jury Czestochowskiej na podstawie amonitöw, Pr. Inst. Geol. 36:1–165.

    Google Scholar 

  • Malmgren, B. A., and Kennett, J. P., 1981, Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific, Paleobiology 7:230–240.

    Google Scholar 

  • Maynard Smith, J., 1966, Sympatric speciation, Am. Nat. 100:637–650.

    Google Scholar 

  • Maynard Smith, J., 1976a, What determines the rate of evolution, Am. Nat. 110:331–338.

    Google Scholar 

  • Maynard Smith, J., 1976b, A comment on the Red Queen, Am. Nat. 110:325–330.

    Google Scholar 

  • Maynard Smith, J., 1982, Current controversies in evolutionary theory, in: Dimensions of Darwinism: Themes and Counterthemes in Twentieth Century Evolutionary Theory (M. Grene, ed.), Cambridge University Press, Cambridge, in press.

    Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Meulenkamp, J. E., 1969, Stratigraphy of Neogene deposits in the Rethymnon Province, Crete, with special reference to the phylogeny of uniserial Uvigerina from the Mediterranean region, Utrecht Micropaleontol. Bull. 2:1–168.

    Google Scholar 

  • Michael, E., 1966, Die Evolution der Gavelinelliden (Foram.) in der nordwestdeutschen Unterkreide, Senckenbergiana Lethaea 47:411–459.

    Google Scholar 

  • Ozawa, T., 1975, Evolution of Lepidolina multiseptata (Permian foraminifer) in East Asia, Mem. Fac. Sci., Kyushu Univ. D (Geol.) 23:117–164.

    Google Scholar 

  • Palframan, D. F. B., 1966, Variation and ontogeny of some Oxfordian ammonites:Taramelliceras richei (de Loriol) and Cre nie eras renggeri (Oppel) from Woodham, Buckinghamshire, Palaeontology 9:290–311.

    Google Scholar 

  • Prothero, D. R., and Lazarus, D. B., 1980, Planktonic microfossils and the recognition of ancestors, Syst. Zool. 29:119–129.

    Google Scholar 

  • Rachootin, S., and Thompson, K. S., 1981, Epigenetics, paleontology, and evolution, in: Evolution Today (G. Scudder and J. J. Reveal, eds.), pp. 181–194, Hunt Institute for Botanical Documentation, Pittsburgh.

    Google Scholar 

  • Raup, D. M., 1977, Stochastic models in evolutionary paleontology, in: Patterns of Evolution (A. Hallam, ed.), pp. 59–78, Elsevier, Amsterdam.

    Google Scholar 

  • Raup, D. M., and Crick, R. E., 1981, Evolution of single characters in the Jurassic ammonite Kosmoceras, Paleobiology 7:200–215.

    Google Scholar 

  • Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S., 1973, Stochastic models of phylogeny and the evolution of diversity, J. Geol. 81:525–542.

    Google Scholar 

  • Reeside, J. B., and Cobban, W. A., 1960, Studies of the Mowry Shale (Cretaceous) and Contemporary Formations in the United States and Canada, U.S. Geological Survey Prof. Paper 151.

    Google Scholar 

  • Reif, W.-E., 1982, Functional morphology on the Procrustean bed of the neutralism-selectionism debate. Notes on the Constructional Morphology approach, Neues Jahrb. Geol. Palaeontol. Abh. (in press).

    Google Scholar 

  • Rensch, B., 1959, Evolution Above the Species Level, Columbia University Press, New York.

    Google Scholar 

  • Rightmire, G. D., 1981, Patterns in the evolution of Homo erectus, Paleobiology 7:241–246.

    Google Scholar 

  • Rosenzweig, M. L., 1978, Competitive speciation, Biol. J. Linn. Soc. 10:275–289.

    Google Scholar 

  • Rosenzweig, M. L., and Taylor, J. A., 1980, Speciation and diversity in Ordovician invertebrates: Filling niches quickly and carefully, Oikos 35:236–243.

    Google Scholar 

  • Schankler, D. M., 1981, Local extinction and ecological re-entry of early Eocene mammals, Nature 293:135–138.

    Google Scholar 

  • Schmalhausen, I. I., 1949, Factors of Evolution: The Theory of Stabilizing Selection, Blakiston, Philadelphia.

    Google Scholar 

  • Schopf, T. J. M., 1981a, Punctuated equilibrium, Paleobiology 7:156–166.

    Google Scholar 

  • Schopf, T. J. M., 1981b, Evidence from findings of molecular biology with regard to the rapidity of genomic change: Implications for species durations, in: Paleobotany, Paleoecology, and Evolution. Festschrift for Harlan P. Banks (K. J. Niklas, ed.), Volume 1, pp. 135–192, Praeger, New York.

    Google Scholar 

  • Seilacher, A., 1970, Arbeitskonzept zur Konstruktionsmorphologie, Lethaia 3:393–396.

    Google Scholar 

  • Simpson, G. G., 1944, Tempo and Mode in Evolution, Columbia University Press, New York.

    Google Scholar 

  • Simpson, G. G., 1953, The Major Features of Evolution, Columbia University Press, New York.

    Google Scholar 

  • Slobodkin, L. B., and Rapoport, A., 1974, An optimal strategy of evolution, Q. Rev. Biol. 49:181–200.

    PubMed  CAS  Google Scholar 

  • Soule, M. E., 1979, Heterozygosity and developmental stability. Another look, Evolution 33:396–401.

    Google Scholar 

  • Stanley, S. M., 1975, A theory of evolution above the species level, Proc. Natl. Acad. Sci. USA 72:646–650.

    PubMed  CAS  Google Scholar 

  • Stanley, S. M., 1979, Macroevolution—Pattern and Process, Freeman, San Francisco.

    Google Scholar 

  • Stanley, S. M., Addicott, W. O., and Chinzei, K., 1980, Lyellian curves in paleontology: Possibilities and limitations, Geology 8:422–426.

    Google Scholar 

  • Stearns, S. C., 1980, A new view of life-history evolution, Oikos 35:266–281.

    Google Scholar 

  • Stearns, S. C., 1982, The role of development in the evolution of life histories, in: Evolution and Development (J. T. Bonner, ed.), pp. 237–258, Springer, Heidelberg.

    Google Scholar 

  • Stenseth, N. C., 1979, Where have all the species gone? On the nature of extinction and the Red Queen hypothesis, Oikos 33:196–227.

    Google Scholar 

  • Sylvester-Bradley, P. C., 1977, Biostratigraphical tests of evolutionary theory, in: Concepts and Methods of Biostratigraphy (E. G. Kauffman and J. E. Hazel, eds.), pp. 41–64, Dowden, Hutchinson & Ross, Stroudsburg.

    Google Scholar 

  • Tanabe, K., 1975, Functional morphology of Otoscaphites puerculus (Jimbo), and Upper Cretaceous ammonite, Trans. Proc. Palaeontol. Soc. Jpn N.S. 99:109–132.

    Google Scholar 

  • Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. D (Geol.) 23:367–407.

    Google Scholar 

  • Templeton, A. R., 1980, The theory of speciation via the founder principle, Genetics 94:1011–1038.

    PubMed  CAS  Google Scholar 

  • Thoday, J. M., 1972, Disruptive selection, Proc. Roy. Soc. Lond. B 182:109–143.

    CAS  Google Scholar 

  • Thomas, E., 1980, Details of Uvigerina development in the Cretan Mio-Pliocene, Utrecht Micropaleontol. Bull. 23:1–167.

    Google Scholar 

  • Thomas, R. D. K., 1979, Morphology, constructional, in: Encyclopedia of Paleontology (R. W. Fairbridge and D. Jablonski, eds.), pp. 482–487, Dowden, Hutchinson & Ross, Stroudsburg.

    Google Scholar 

  • Thompson, V., 1976, Does sex accelerate evolution?, Evol. Theory 1:131–156.

    Google Scholar 

  • Trammer, J., 1981, Morphological variation and relative growth in two Jurassic demosponges, Neues Jahrb. Geol. Palaeontol. Monatsh. 1981:54–64.

    Google Scholar 

  • Van Gorsei, J. T., 1975, Evolutionary trends and stratigraphic significance of the Late Cretaceous Helicorbitoides-Lepidorbitoides lineage, Utrecht Micropaleontol. Bull. 12:1–100.

    Google Scholar 

  • Van Valen, L., 1978, The statistics of variation, Evol. Theory 4:33–43.

    Google Scholar 

  • Van Vessem, E. J., 1978, Study of Lepidocyclinidae from South-East Asia, particularly from Java and Borneo, Utrecht Micropaleontol. Bull. 19:1–163.

    Google Scholar 

  • Vrba, E. S., 1980, Evolution, species, and fossils: How does life evolve?, S. Afr. J. Sci. 76:61–84.

    Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, Allen & Unwin, London.

    Google Scholar 

  • Waddington, C. H., 1975, The Evolution of an Evolutionist, Cornell University Press, Ithaca.

    Google Scholar 

  • West, R. M., 1979, Apparent prolonged evolutionary stasis in the primitive Eocene hoofed mammal Hyopsodus, Paleobiology 5:252–260.

    Google Scholar 

  • White, M. J. D., 1978, Modes of Speciation, Freeman, San Francisco.

    Google Scholar 

  • Williams, G. C., 1975, Sex and Evolution, Princeton University Press, Princeton.

    Google Scholar 

  • Williamson, P. G., 1981, Palaeontological documentation of speciation in Cenozoic molluscs from Turkana Basin, Nature 293:437–443.

    Google Scholar 

  • Willmann, R., 1981, Evolution, Systematik und stratigraphische Bedeutung der neogenen Süsswassergastropoden von Rhodos und Kos/Ägäis, Palaeontogr. Am. A 174:10–235.

    Google Scholar 

  • Wilson, D. S., 1980, The Natural Selection of Populations and Communities, Benjamin/ Cummings, Menlo Park.

    Google Scholar 

  • Zedier, B., 1960, Mikropaläontologische Untersuchungen in den Unterkreide-Aufschlüssen Moorberg und Stöcken bei Hannover, Ber. Naturhist. Ges. Hannover 104:25–45.

    Google Scholar 

  • Zedier, B., 1961, Stratigraphische Verbreitung und Phylogenie von Foraminiferen des nordwestdeutschen Oberhauterive, Paläontol. Z. 35:28–61.

    Google Scholar 

  • Ziegler, A. M., 1966, The Silurian brachiopod Eocoelia hemisphaerica (J. de C. Sowerby) and related species, Palaeontology 9:523–543.

    Google Scholar 

  • Ziegler, B., 1957, Creniceras dentatum (Ammonitacea) im Mittel-Malm Südwestdeutschlands, Neues Jahrb. Geol. Palaeontol. Monatsh. 1956:553–575.

    Google Scholar 

  • Ziegler, B., 1959, Evolution in Upper Jurassic ammonites, Evolution 13:229–235.

    Google Scholar 

  • Ziegler, B., 1974, Über Dimorphismus und Verwandtschaftsbeziehungen bei “Oppelien” des oberen Juras (Ammonoidea: Haplocerataceae), Stuttg. Beitr. Naturk. B (Geol. Palaeontol.) 11:1–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Hoffman, A. (1982). Punctuated versus Gradual Mode of Evolution. In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6968-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6968-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6970-1

  • Online ISBN: 978-1-4615-6968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics