Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 196))

Summary

Because homocysteine, the sulfur-containing amino acid of primary focus at this International Conference, arises as an intermediary product of methionine metabolism, this gives us justification for an early consideration of methionine kinetics and balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vickery HB, Schmidt CLA. The history of the discovery of the amino acids. Chem Rev 9:169–318, 1931.

    Article  CAS  Google Scholar 

  2. Rose WC. The amino acid requirements of adult man. Nutr Abstr Revs 27:631–647, 1957.

    CAS  Google Scholar 

  3. Jackson RW, Block RJ. Metabolism of cystine and methionine. Science 74:414, 1931.

    Article  PubMed  CAS  Google Scholar 

  4. Jackson RW, Block RJ. The metabolism of cystine and methionine: The availability of methionine in supplementing a diet deficient in cystine. J Biol Chem 98:465–477, 1932.

    CAS  Google Scholar 

  5. Weichselbaum TE, Weichselbaum MB, Stewart CP. Feeding experiments with methionine. Nature 129: 795, 1932.

    Article  CAS  Google Scholar 

  6. Rose WC, Oesterling MJ, Womack M. Comparative growth on diets containing ten and nineteen amino acids, with further observations upon the role of glutamic and aspartic acids. J Biol Chem 176:753–762, 1948.

    PubMed  CAS  Google Scholar 

  7. Rose WC, Johson JE, Haines WJ. The amino acid requirements of man: 1. The role of valine and methionine. J Biol Chem 182:541–555, 1950.

    CAS  Google Scholar 

  8. Rose WC, Coon MJ, Lockhart HB, Lambert GF. The amino acid requirements of man: XI. The threonine and methionine requirements. J Biol Chem 215:101–110, 1955.

    PubMed  CAS  Google Scholar 

  9. Rose WC, Wixom RL. The amino acid requirements of man: XIII. The sparing effect of cystine on the methionine requirement. J Biol Chem 216:763–777, 1955.

    CAS  Google Scholar 

  10. Irwin MI, Hegsted DM. A conspectus of research on amino acid requirements of man. J Nutr 101:539–566, 1971.

    PubMed  CAS  Google Scholar 

  11. Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism 24:721–735, 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Mudd SH, Levy HL, Skovby F. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease. New York: McGraw-Hill, 1989, pp 693–734.

    Google Scholar 

  13. Finkelstein JD. Methionine metabolism in mammals: The biochemical basis for homocystinuria. Metabolism 23:387–390, 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Mudd SH, Ebert MH, Scriver CR. Labile methyl group balances in the human: The role of sarcosine. Metabolism 29:707–720, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Yoshida A. Nutritional aspects of amino acid oxidation. In: Taylor TG, Jenkins NK (eds) Proc XIII International Cong Nutr. London: John Libbey, 1986, pp 378–382.

    Google Scholar 

  16. Yokogoshi H, Yoshida A. Effect of supplementation of methionine and threonine on hepatic polyribosome profile in rats meal-fed a protein-free diet. J Nutr 109:148–154, 1979.

    PubMed  CAS  Google Scholar 

  17. Millward DJ, Rivers JPW. The nutritional role of indispensable amino acids and the metabolic basis for their requirements. Europ J Clin Nutr 42:367–393, 1988.

    CAS  Google Scholar 

  18. Millward DJ, Price GM, Pacy PJH, Halliday D. Maintenance protein requirements: The need for conceptual reevaluation. Proc Nutr Soc 49:473–487, 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Young VR, Bier DM. Stable isotopes (13C and 15N) in the study of human protein and amino acid metabolism and requirements. In: Beers RF, Bassett EG (eds) Nutritional Factors: Modulating Effects on Metabolic Processes. New York: Raven Press, 1981, pp 267–308.

    Google Scholar 

  20. Waterlow JC, Garlick PJ, Millward DJ. Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland Publishing Co, 1978.

    Google Scholar 

  21. Aston FW. Bakerian Lecture: A new mass spectrograph and the whole number rule. Proc Roy Soc (A) 115:487–515, 1927.

    Article  CAS  Google Scholar 

  22. Schoenheimer R. The Dynamic State of Body Constituents. Cambridge, MA: Harvard University Press, 1942.

    Google Scholar 

  23. Schoenheimer R, Rittenberg D. The application of isotopes to the study of intermediary metabolism. Science 87:221–226, 1938.

    Article  PubMed  CAS  Google Scholar 

  24. Sprinson DB, Rittenberg D. The rate of interaction of the amino acids as the diet with tissue proteins. J Biol Chem 180:715–726, 1949.

    PubMed  CAS  Google Scholar 

  25. Ochoa-Solano A, Gitler C. Incorporation of 75Semethionine into chicken egg white proteins. J Nutr 94:243–248, 1968.

    PubMed  CAS  Google Scholar 

  26. Maurer W. Die Grosse de Umsatzes von Organ und Plasmaeiweiss pl: 10. Colloquium der Gesellschaft für Physiol Chem. Berlin: Springer-Verlag, 1960.

    Google Scholar 

  27. Young VR, El-Khoury AE, Sánchez M, Castillo L. The biochemistry and physiology of protein and amino acid metabolism, with reference to protein nutrition. In: Räiha NCR (ed) Protein Metabolism During Infancy. New York: Raven Press, Ltd, 1994.

    Google Scholar 

  28. Storch KJ, Wagner DA, Burke JF, Young VR. Quantitative study in vivo of methionine cycle in humans using [methyl-2H3]-and 1-13C]methionine. Am J Physiol 258:E322–331, 19

    Google Scholar 

  29. Storch KJ, Wagner DA, Burke JF, Young VR. [1-13C; methyl-2H3]methionine kinetics in humans: Methionine conservation and cystine sparing. Am J Physiol E790–798, 1990.

    Google Scholar 

  30. Selhub J, Miller J. The pathogenesis of homocy-steinemia: Interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am J Clin Nutr 55:131–138, 1992.

    PubMed  CAS  Google Scholar 

  31. Steele RD, Benevenga NJ. The metabolism of 3-methylthiopropionate in rat liver homogenates. J Biol Chem 254:8885–8890, 1979.

    PubMed  CAS  Google Scholar 

  32. Smolin LA, Benevenga NJ. Methionine, homocyst(e)ine, cyst(e)ine-metabolic interrelationships. In: Friedman M (ed) Absorption and Utilization of Amino Acids, Vol. 1. Boca Raton, FL: CRC Press, Inc., 1989, pp 157–187.

    Google Scholar 

  33. Blom HJ, Boers GHJ, van den Elzen JPAM, Gahl WA, Tangerman A. Transamination in humans. Clin Sci 76:43–49, 1989.

    PubMed  CAS  Google Scholar 

  34. Blom HJ, Boers GHJ, Trijbels JMF, van Roessel JJM, Tangerman A. Cystathionine-synthase-deficient patients do not use the transamination pathway of methionine to reduce hypermethionemia and homocystinemia. Metabolism 38:577–582, 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Gahl W, Bernardini I, Finkelstein JD et al. Transsulfuration in an adult with hepatic methionine adenosyltransferase deficiency. J Clin Invest 81:390–397, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Steele RD, Barber TA, Laiich J, Benevenga NJ. Effects of dietary 3-methylthiopropionate on metabolism growth and hematopoiesis in the rat. J Nutr 109:1739–1751, 1979.

    PubMed  CAS  Google Scholar 

  37. Scilowski PWD, Pickard K. The regulation of transaminative flux of methionine in rat liver mitochondria. Arch Biochem Biophys 314:412–416, 1994.

    Article  Google Scholar 

  38. Young VR, Wagner DA, Burini R, Storch KJ. Methionine kinetics and balance at the 1985 FAO/WHO/ UNU intake requirement in adult men studied with L-[2H3-methyl-l-13C]methionine as a tracer. Am J Clin Nutr 54:377–385, 1991.

    PubMed  CAS  Google Scholar 

  39. Hiramatsu T, Fukagawa NK, Marchini JS et al. Methionine and cysteine kinetics at different intakes of cystine in healthy adult men. Am J Clin Nutr 60:525–533, 1994.

    PubMed  CAS  Google Scholar 

  40. Young VR, Marchini JS. Mechanisms and nutritional significance of metabolic responses to altered intakes of protein and amino acids, with reference to nutritional adaptation in humans. Amer J Clin Nutr 51:270–289, 1990.

    PubMed  CAS  Google Scholar 

  41. Hoerr RA, Matthews DE, Bier DM, Young VR. Leucine kinetics from [2H3]and [13C]leucine infused simultaneously by gut and vein. Amer J Physiol 260:E111–117, 1991.

    PubMed  CAS  Google Scholar 

  42. Castillo L, Chapman TE, Yu Y-M et al. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol 265:E532–539, 1993.

    PubMed  CAS  Google Scholar 

  43. Cordelia J, Matthews DE, Hoerr RA, Bier DM, Young VR. Leucine kinetics at graded intakes in young men: Quantitative fate of dietary leucine. Am J Clin Nutr 48:988–1009, 1988.

    Google Scholar 

  44. Sánchez M, El-Khoury AE, Castillo L et al. 24 hour intravenous and oral tracer studies with L-[1-13C]phenylalanine and L-[3, 3-2H2]tyrosine at a tyrosine-free, generous phenylalanine intake in adults. Am J Clin Nutr 63:352–545, 1996.

    Google Scholar 

  45. Biolo G, Tessani P, Inchiostro S et al. Leucine and phenylalanine kinetics during mixed meal ingestion: A multiple tracer approach. Am J Physiol 262:E455–463, 1992.

    PubMed  CAS  Google Scholar 

  46. Rerat A, Simoes-Nunes C, Mendy F, Vaisode P, Vaugelode P. Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig. Brit J Nutr 68:111–138, 1992.

    Article  PubMed  CAS  Google Scholar 

  47. Guttormsen AB, Schneede J, Fiskerstrand T, Ueland PM, Refsum HM. Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects. J Nutr 124:1934–1941, 1994.

    PubMed  CAS  Google Scholar 

  48. Wilcken DEL, Wilcken B, Dudman NPB, Tyrrell PA. Homocystinuria: The effects of betaine in the treatment of patients not responsive to pyridoxine. N Engl J Med 309:448–453, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Smolin LA, Benevenga NJ, Berlow S. The use of betaine for the treatment of homocystinuria. J Pediatr 99:467–472, 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Wilcken DEL, Dudman NPB, Tyrrell PA. Homocystinuria due to cystathionine β-synthase deficiency: The effects of betaine treatment in pyridoxine-responsive patients. Metabolism 34:1115–1121, 1985.

    Article  PubMed  CAS  Google Scholar 

  51. Stipanuk MH. Metabolism of sulfur-containing amino acids. Ann Rev Nutr 6:179–209, 1966.

    Article  Google Scholar 

  52. Storch KJ, Wagner DA, Young VR. Methionine kinetics in adult men: Effects of dietary betaine on L-[2H3-methyl-l-13C]methionine. Am J Clin Nutr 54: 386–394, 1991.

    PubMed  CAS  Google Scholar 

  53. Baker DH. Nutritional and metabolic interrelationships among sulfur compounds in avian nutrition. Fed Proc 35:1917–1922, 1976.

    PubMed  CAS  Google Scholar 

  54. Finkelstein JD, Mudd SH. Trans-sulfuration in mammals: The methionine sparing effect of cystine. J Biol Chem 242:873–880, 1967.

    PubMed  CAS  Google Scholar 

  55. Tuttle SG, Bassett SH, Griffith WH, Mulcare DB, Swenseid ME. Further observations on the amino acid requirements of older men: II. Methionine and lysine. Am J Clin Nutr 16:229, 1965.

    PubMed  CAS  Google Scholar 

  56. Kang S-S, Wong PWK, Malinow MR. Hyperhomo-cyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 12:279–298, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Wolfe RR, Jahoor F, Hartl WH. Protein and amino acid metabolism after injury. Diabetes Metab Rev 5:149–164, 1989.

    Article  PubMed  CAS  Google Scholar 

  58. Martensson J, Larsson J, Nordstrom H. Amino acid metabolism during the anabolic phase of severely burned patients: With special reference to sulphur amino acids. Europ J Clin Invest 17:130–135, 1987.

    PubMed  CAS  Google Scholar 

  59. Larsson J, Liljedall S-O, Martensson J, Nordstrom H, Schildt B, Sorbo B. Urinary excretion of sulfur amino acids and sulfur metabolites in burned patients receiving parenteral nutrition. J Trauma 22:656–663, 1982.

    Article  PubMed  CAS  Google Scholar 

  60. Yu Y-M, Burke JF, Young VR. A kinetic study of L-2H3-methyl-l-13C-methionine in patients with severe burn injury. J Trauma 35:1–7, 1993.

    Article  PubMed  Google Scholar 

  61. Rudman D, Kutner M, Ansley J et al. Hypotyro-sinemia, hypocystinemia and failure to retain nitrogen during total parenteral nutrition of cirrhotic patients. Gastroenterology 81:1025–1035, 1981.

    PubMed  CAS  Google Scholar 

  62. Marchesini G, Bugianesi E, Banchi G et al. Defective methionine metabolism in cirrhosis: Relation to severity of liver disease. Hepatology 16:149–155, 1992.

    Article  PubMed  CAS  Google Scholar 

  63. Hoffman EJ, Phelps ME. Positron emission tomography: Principles and quantitation. In: Phelps ME, Mazziotta JC, Schelbert HR (eds) Positron Emission Tomography and Autoradiography: Principles and Applications for Brain and Heart. New York: Raven Press, 1986, pp 237–286.

    Google Scholar 

  64. Ogawa T, Kamno I, Shishido F et al. Clinical value of PET with 18F-fluorodeoxy-glucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiologica 32:197–202, 1991.

    Article  PubMed  CAS  Google Scholar 

  65. Leskinen-Kallis S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M, Joensee H. Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33:691–695, 1992.

    Google Scholar 

  66. Yu Y-M, Wagner DA, Tredget EE et al. Quantitative role of splanchnic region in leucine metabolism: L-[1-13C, 15N]leucine and substrate balance studies. Am J Physiol 259:E36–51, 1990.

    PubMed  CAS  Google Scholar 

  67. Kuhn TS. The Structure of Scientific Revolutions, 2nd ed. Chicago: The University of Chicago Press, 1970.

    Google Scholar 

  68. Mansoor MA, Ueland PM, Svardal AM. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with hyperhomocysteinemia due to cobelamin deficiency. Am J Clin Nutr 59:631–635, 1994.

    PubMed  CAS  Google Scholar 

  69. Meister A, Larsson A. Glutathione synthetase deficiency and other disorders of γ-glutamyl cycle. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease. New York: McGraw-Hill, 1989, pp 855–869.

    Google Scholar 

  70. Taniguchi M, Hirayama K, Yamaguchi K, Takeishi N, Suzuki M. Nutritional aspects of glutathione metabolism and function. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: Chemical, Biological and Medical Aspects. New York: J Wiley and Sons, 645–727, 1989.

    Google Scholar 

  71. Meister A, Anderson ME. Glutathione. Annu Rev Biochem 52:711–760, 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Vina T, Vednto M, Garcia-Sola F et al. L-cysteine and glutathione metabolism are impaired in premature infants due to cystathionine deficiency. Am J Clin Nutr 61:1067–1069, 1995.

    PubMed  CAS  Google Scholar 

  73. Fukagawa NK, Ajami AM, Young VR. Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. Am J Physiol 270:E209–214, 1996.

    PubMed  CAS  Google Scholar 

  74. 74. FAO/WHO. Energy and protein requirements: Report of a Joint FAO/WHO ad hoc Expert Committee. Tech Rept Series No. 522. Geneva, Switzerland: World Health Organization, 1973.

    Google Scholar 

  75. FAO/WHO/UNU. Energy and protein requirements. Tech Rept Series No. 724. Geneva, Switzerland: World Health Organization, 1985.

    Google Scholar 

  76. Young VR. 1987 McCollum Award Lecture. Kinetics of amino acid metabolism: Nutritional implications and some lessons. Am J Clin Nutr 46:709–725, 1987.

    PubMed  CAS  Google Scholar 

  77. Young VR, El-Khoury AE. Can amino acid requirements for nutritional maintenance in adult humans be approximated from the amino acid composition of body mixed proteins? Proc Natl Acad Sci 92:300–304, 1995.

    Article  PubMed  CAS  Google Scholar 

  78. Fuller MF, Garlick PJ. Human amino acid requirements: Can the controversy be resolved? Annu Rev Nutr 14:217–241, 1994.

    Article  PubMed  CAS  Google Scholar 

  79. Fuller MF, Milne A, Harris CI, Reid TM, Keenan R. Amino acid losses in ileostomy fluid on a protein-free diet. Am J Clin Nutr 50:70–73, 1994.

    Google Scholar 

  80. Allison JB, Bird JWC. Elimination of Nitrogen from the Body. In: Munro HN, Allison JB (eds) Mammalian Protein Metabolism. New York: Academic Press, Inc., 1964, pp 483–511.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, V.R., Yu, YM., Fukagawa, N.K., Raguso, C.A. (1997). Methionine Kinetics and Balance. In: Graham, I., Refsum, H., Rosenberg, I.H., Ueland, P.M., Shuman, J.M. (eds) Homocysteine Metabolism: From Basic Science to Clinical Medicine. Developments in Cardiovascular Medicine, vol 196. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5771-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5771-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7645-3

  • Online ISBN: 978-1-4615-5771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics