Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 92))

Abstract

In recent years, significant advances in understanding the molecular genetics of human cancer have been made. Application of these research advances to clinical practice is beginning. While researchers are identifying oncogenes and tumor suppressor genes and studying their specific functions, clinicians are using knowledge of oncogenes and tumor suppressor genes for diagnosing cancer, for therapeutic decision making purposes, and for prognostic purposes. Clearly, the future will bring new therapies based on molecular genetic advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greaves MF. 1988. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 2(2):120–125.

    PubMed  CAS  Google Scholar 

  2. Biran H, Ariel I, De Groot N, Hochberg A. 1994. On the oncodevelopmental role of human imprinted genes. Med Hypotheses 43:119–123.

    PubMed  CAS  Google Scholar 

  3. Kessel M., Gruss P. 1990. Murine developmental control genes. Science 249:374.

    PubMed  CAS  Google Scholar 

  4. Acampora D, D’Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A, Boncinelli E. 1989. The human Hox gene family. Nucleic Acids Res 17:10385.

    PubMed  CAS  Google Scholar 

  5. Shashikant CS, Utset MF, Violette SM, Wise TL, Einat P, Einat M, Pendleton JW, Schughart KS, Ruddle FH. 1991. Homeobox genes in mouse development. Grit Rev Eukaryot Gene Expresssion 1(3):207.

    CAS  Google Scholar 

  6. Nusslein-Volhard C, Frohnhofer HG, Lehman R. 1987. Determination of anteroposterior polarity in Drosophila. Science 238:1675.

    PubMed  CAS  Google Scholar 

  7. Akam M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1.

    PubMed  CAS  Google Scholar 

  8. Gehring WJ, Hiromi Y. 1986. Homeotic genes and the homeobox. Annu Rev Genet 20:147–173.

    PubMed  CAS  Google Scholar 

  9. Sheperd JCW, McGinnis W, Carrasco AE, DeRobertis EM, Gehring WJ. 1984. Fly and frog homeodomains show homologies with yeast mating type regulatory proteins. Nature 319:70.

    Google Scholar 

  10. Scott MP, Tamkun JW, Hartzell GW. 1989. The structure and function of the homeodomain. Biochem Biophys Acta 989:25.

    PubMed  CAS  Google Scholar 

  11. Levine M, Hoey T. 1988. Homeobox proteins as sequence-specific transcription factors. Cell 55:537.

    PubMed  CAS  Google Scholar 

  12. Biggin MD, Tijan R. 1989. Transcription factors and the control of Drosophila development. Trends Genet 5:377.

    PubMed  CAS  Google Scholar 

  13. Falzon M, Chung SY. 1988. The expression of rat homeobox-containing genes is develop-mentally regulated and tissue specific. Development 103:601.

    PubMed  CAS  Google Scholar 

  14. Regulski M, Harding K, Kostriken R, Karch F, Levine M, McGinnis W. 1985. Homeobox genes of the antennapedia and bithorax gene complexes of Drosophila. Cell 43:71.

    PubMed  CAS  Google Scholar 

  15. Karch F, Weiffenbach B, Peifer M, Bender W, Duncan I, Celniker S, Crosby M, Lewis EB. 1985. The abdominal region of the bithorax complex. Cell 43:81.

    PubMed  CAS  Google Scholar 

  16. Sanchez-Herreo E, Vernos I, Marco R, Morata G. 1985. Genetic organization of Drosophila bithorax complex. Nature 313:108.

    Google Scholar 

  17. Lewis E. 1978. A gene complex controlling segmentation in Drosophila. Nature 276:565–570.

    PubMed  CAS  Google Scholar 

  18. Duboule D, Boncinelli E, DeRobertis E, Featherstone M, Lonai P, Oliver G, Ruddle F. 1990. An update of mouse and human Hox gene nomenclature. Genomics 7:458.

    PubMed  CAS  Google Scholar 

  19. McAlpine PJ, Shows TB. 1990. Nomenclature for human homeobox genes. Genomics 7:460.

    PubMed  CAS  Google Scholar 

  20. Colberg-Poley AM, Voss SD, Chowdhury K, Stewart CI, Wagner EF, Gruss P. 1985. Clustered homeoboxes are differentially expressed during development. Cell 43:39.

    PubMed  CAS  Google Scholar 

  21. Duboule D, Baron A, Mahi P, Galliot B. 1986. A new homeobox is present in overlapping cosmid clones which defines the mouse HOX-1 locus. EMBO J 5:1973.

    PubMed  CAS  Google Scholar 

  22. Hart CP, Awgulewitsch A, Fainsod A, McGinnis W, Ruddle FH. 1985. Homeobox gene complex on mouse chromosome 11: molecular cloning, expression in embryogenesis, and homology to a human homeobox locus. Cell 43:9.

    PubMed  CAS  Google Scholar 

  23. Brier G, Dressler GR, Gruss P. 1988. Primary structure and developmental expression pattern of Hox 3.1, a member of the murine Hox 3 homeobox gene cluster. EMBO J 7:1329.

    Google Scholar 

  24. Featherstone MS, Baron A, Gaunt SJ, Mattei JG, Duboule D. 1988. Hox-5.1 defines a homeobox-containing gene locus on mouse chromosome 2. Proc Natl Acad Sci USA 85:4760.

    PubMed  CAS  Google Scholar 

  25. Dolle P, Duboule D. 1989. Two gene members of the murine HOX-5 complex show regional and cell-type specific expression in developing limbs and gonads. EMBO J 8:1507.

    PubMed  CAS  Google Scholar 

  26. Graham A, Papalopulu N, Krumlauf R, 1989, The murine and Drosophila homeobox gene complexes have common features of organization, and expression. Cell 57:367.

    PubMed  CAS  Google Scholar 

  27. Krumlauf R. 1994. Hox genes in vertebrate development. Cell 78:191.

    PubMed  CAS  Google Scholar 

  28. Simeone A, Acampora D, Nigro V, Faiella A, D’Esposito M, Stornaiuolo A, Mavilio F, Boncinelli E. 1991. Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech Dev 33:215–228.

    PubMed  CAS  Google Scholar 

  29. Akam ME. 1989. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57:347.

    PubMed  CAS  Google Scholar 

  30. Duboule D, Dolle P. 1989. The structural and functional organization of the murine Hox gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497.

    PubMed  CAS  Google Scholar 

  31. Kessel M, Oruss P. 1991. Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104.

    PubMed  CAS  Google Scholar 

  32. Manak JR, Scott MP. 1994. A class act: conservation of homeodomain protein functions. Development (Suppl):61–77. There is no volume number for the supplement.

    Google Scholar 

  33. Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P. 1991. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105.

    PubMed  CAS  Google Scholar 

  34. Chisaka O, Capecchi MR. 1991. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox-1.5. Nature 350:473.

    PubMed  CAS  Google Scholar 

  35. Gaunt SJ, Krumlauf R, Duboule D. 1989. Mouse homeo-genes within a subfamily, Hox-1.4, −2.6 and −5.1, display similar antero-posterior domains of expression in the embryo, but show stage- and tissue-dependent differences in their regulation. Development 107:131–141.

    PubMed  CAS  Google Scholar 

  36. Duboule D. 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development (Suppl):135–142. There is no volume number for the supplement.

    Google Scholar 

  37. Izpisua-Belmonte JC, Duboule D. 1992. Homeobox genes and pattern formation in the vertebrate limb. Dev Biol 152:26–36.

    PubMed  CAS  Google Scholar 

  38. Duboule D. 1991. Patterning in the vertebrate limb. Curr Opinion Genet Dev 1:211–216.

    CAS  Google Scholar 

  39. Ramirez-Solis R, Zheng H, Whiting J, Krumlauf R, Bradley A. 1993 Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73:279–294.

    PubMed  CAS  Google Scholar 

  40. Cillo C, Barba P, Bucciarelli G, Magli MC, Boncinelli E. 1992. Hox gene expression in normal and neoplastic kidney. Int J Cancer 51:892–897.

    PubMed  CAS  Google Scholar 

  41. De Vita G, Barba P, Odartchenko J, Givel JC, Freschi G, Bucciarelli G, Magli MC, Boncinelli E, Cillo C. 1993. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer 29:887–893.

    Google Scholar 

  42. Tiberio C, Barba P, Magli MC, Arvelo F, Le Chevalier T, Poupon MF, Cillo C. 1994. HOX gene expression in human small-cell lung cancers xenografted into nude mice. Int J Cancer 58:608–615.

    PubMed  CAS  Google Scholar 

  43. Blatt C. 1990. The betrayal of homeo box genes in normal development: the link to cancer. Cancer Cell 6(2):186–198.

    Google Scholar 

  44. Castronovo V, Kusaka M, Chariot A, Gielen J, Sobel M. 1994. Homeobox genes: potential candidates for the transcriptional control of the transformed phenotype and invasive pheno-type. Biochem Pharmacol 47(1):137–143.

    PubMed  CAS  Google Scholar 

  45. Maulbecker CC, Gruss P. 1993. The oncogenic potential of deregulated homeobox genes. Cell Growth Differ 4:431–141.

    PubMed  CAS  Google Scholar 

  46. Perkins A, Kongsuwan K, Visvader V, Adams JM, Cory S. 1990. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc Natl Acad Sci USA 87:8398–8402.

    PubMed  CAS  Google Scholar 

  47. Blatt CD, Aberdam D, Schwartz R, Sachs L. 1988. DNA rearrangement of a homeobox gene in myeloid leukemic cells. EMBO J 79(13):4283–4290.

    Google Scholar 

  48. Barba P, Magli MC, Tiberior Cl, Cillo C. 1993. Hox gene expresssion in human cancers. Adv Exp Med Biol 348:45–57.

    PubMed  CAS  Google Scholar 

  49. Aberdam D, Negreanu V, Sachs L, Blatt C. 1991. The oncogenic potential of an activated Hox-2.4 homeobox gene in mouse fibroblasts. Mol Cell Biol 11(l):554–557.

    PubMed  CAS  Google Scholar 

  50. Castronovo V, Kusaka M, Chariot A, Gielen J, Sobel M. 1994. Homeobox genes: potential candidates for the transcriptional control of the transformed and invasive phenotype. Biochem Pharmacol 47(1):137–143.

    PubMed  CAS  Google Scholar 

  51. Cillo C. 1994. Hox genes in human cancers. Invasion Metastasis 14:38–49.

    PubMed  CAS  Google Scholar 

  52. Manohar CF, Salwen HR, Furtado MR, Cohn SL. 1996. Up-regulation of HoxC6, HoxD1, and HoxD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumor Biol 17:34–47.

    CAS  Google Scholar 

  53. Lichty BD, Ackland-Snow J, Noble L, Kamel-Reid S, Dube ID. 1995. Dysregulation of Hox11 by chromosome translocations in T-cell acute lymphoblastic leukemia: a paradigm for homeobox gene involvement in human cancer. Leuk Lymphoma 16:209–215.

    PubMed  CAS  Google Scholar 

  54. Hatano M, Roberts CWM, Minden M, Crist WM, Korsemeyer SJ. 1991. Deregulation of a homeobox gene, Hox11 by the t(l;14) in T cell leukemia. Science 253:79–82.

    PubMed  CAS  Google Scholar 

  55. Zhang N, Gong ZZ, Minden M, Lu M. 1993. The HOX-11 (TCL-3) homeobox protooncogene encodes a nuclear protein that undergoes cell cyle-dependent regulation. Oncogene 8:3265–3270.

    PubMed  CAS  Google Scholar 

  56. McGrath J, Solter D. 1984. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179.

    PubMed  CAS  Google Scholar 

  57. Surani MA, Barton SC, Norris ML. 1984. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548.

    PubMed  CAS  Google Scholar 

  58. Barton SC, Ferguson-Smith AC, Fundele R, Surani MA. 1991. Influence of paternally imprinted genes on development. Development 113:679–687.

    PubMed  CAS  Google Scholar 

  59. Moore T, Haig D. 1991. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49.

    PubMed  CAS  Google Scholar 

  60. Cattanach B, Beechey C. 1990. Autosomal and X-chromosome imprinting. Development (Suppl):63–72. There is no volume number for the supplement.

    Google Scholar 

  61. Razin A, Cedar H. 1994. DNA methylation and genomic imprinting, Cell 77:473–476.

    PubMed  CAS  Google Scholar 

  62. Swain JL, Stewart TA, Leder P. 1987. Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting. Cell 50:719–727.

    PubMed  CAS  Google Scholar 

  63. Rainier S, Feinberg AP. 1994. Genomic imprinting, DNA methylation, and cancer. J Natl Cancer Inst 86(10):753–759.

    PubMed  CAS  Google Scholar 

  64. Tartof KD, Bremer M. 1990. Mechanisms for the construction and developmental control of heterochromatin formation and imprinted chromosome domains. Development (Suppl):35–45. There is no volume number for the supplement.

    Google Scholar 

  65. Li E, Beard C, Jaenisch R. 1993. Role for DNA methylation in genomic imprinting. Nature 366:362–365.

    PubMed  CAS  Google Scholar 

  66. Beard C, Li E, Jaenisch R. 1995. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9:2325.

    PubMed  CAS  Google Scholar 

  67. Razin A, Cedar H. 1994. DNA methylation and genomic imprinting. Cell 77:473–476.

    PubMed  CAS  Google Scholar 

  68. Neumann B, Kubicka P, Barlow DP. 1995. Characteristics of imprinted genes. Nature Genet 9:12.

    PubMed  CAS  Google Scholar 

  69. Pfeifer K, Tilghman SM. 1994. Allele-specific gene expression in mammals: the curious case of the imprinted RNAs. Genes Dev 8:1867.

    PubMed  CAS  Google Scholar 

  70. Lustig O, Ariel I, Ilan J, Lev-Lehman E, DeGroot N, Hochberg A. 1994. The expression of the imprinted gene H19 in the human embryo. Mol Reprod Dev 38:239–246.

    PubMed  CAS  Google Scholar 

  71. Biran H, Ariel I, DeGroot N, Shani A, Hochberg A. 1994. Human imprinted genes as oncodevelopmental markers. Tumor Biol 15:123–134.

    CAS  Google Scholar 

  72. Brannan CI, Dees EC, Ingram RS, et al. 1990. The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36.

    PubMed  CAS  Google Scholar 

  73. Leighton PA, Ingram RS, Eggenschwiler A, Efstratiadis SM, Tilghman SM. 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34.

    PubMed  CAS  Google Scholar 

  74. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. 1993. Tumor-suppressor activity of H19 RNA. Nature 365:764–767.

    PubMed  CAS  Google Scholar 

  75. Brunkow ME, Tilghman SM. 1991. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev 5:1092–1101.

    PubMed  CAS  Google Scholar 

  76. Giannoukakis N, Deal C, Paquette J, Goodyear CG, Polychronakos C. 1993. Parental genomic imprinting of the human IGF2 gene. Nature Genet 4:98–101.

    PubMed  CAS  Google Scholar 

  77. Ohlsson R, Nystrom A, Pfeifer-Ohlsson S, Tohonen V, Hedbourg F, Schofield P, Flam F, Ekstrom TJ. 1993. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet 4:94–97.

    PubMed  CAS  Google Scholar 

  78. Zemel S, Bartholomei MS, Tilghman SM. 1992. Physical linkage of the mammalian imprinted genes, H19 and IGF2. Nature Genet 2:61–65.

    PubMed  CAS  Google Scholar 

  79. Ohlsson R, Hedborg F, Holmgren L, Walsh C, Ekstrom TJ. 1994. Overlapping patterns of IGF2 and H19 expression during human development. Development 120:361–368.

    PubMed  CAS  Google Scholar 

  80. Sara V, Hall K. 1990. Insulin-like growth factors and their binding proteins. Phys Rev 70:591–614.

    CAS  Google Scholar 

  81. DeChiara TM, Efstratiadis A, Robertson EJ. 1990. A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene by disrupted targeting. Nature 345:78–80.

    PubMed  CAS  Google Scholar 

  82. Rainier S, Johnson L, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. 1993. Relaxation of imprinted genes in human cancer. Nature 362:747–749.

    PubMed  CAS  Google Scholar 

  83. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE. 1993. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751.

    PubMed  CAS  Google Scholar 

  84. Weksberg R, Shen DR, Fei YL, Song QL, Squire J. 1993. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet 5:143–150.

    PubMed  CAS  Google Scholar 

  85. Junien C, Henry I. 1994. Genetics of Wilms’ tumor: a blend of aberrant development and genomic imprinting. Kidney Int 40:1264–1279.

    Google Scholar 

  86. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. 1993. WT-1 is required for early kidney development. Cell 74:679–691.

    PubMed  CAS  Google Scholar 

  87. Jinno Y, Yun K, Nishiwaki K, Kubota T, Ogawa O, Reeve AE, Nikawa N. 1994. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nature Genet 6:305–309.

    PubMed  CAS  Google Scholar 

  88. Little MH, Dunn R, Byrne JA, Seawright A, Smith PJ, Pritchard-Jones K, VanHeyningen V, Hastie JD. 1992. Equivalent expression of paternally and maternally inherited WT1 alleles in normal fetal tissue and Wilms’ tumors. Oncogene 7(4):635–641.

    PubMed  CAS  Google Scholar 

  89. Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M. 1989. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature 342:281–285.

    PubMed  CAS  Google Scholar 

  90. Butler MG, Meaney FJ, Palmer CG. 1986. Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am J Med Genet 23:783–809.

    Google Scholar 

  91. Knoll JHM, Nicholls RD, Magneis RE, Graham JM, Lalande M, Latt SA. 1989. Angelman and Prader-Willi syndromes share a common chromosome deletion but differ in parental orgin of the deletion. Am J Med Genet 32:285–290.

    PubMed  CAS  Google Scholar 

  92. Leff SE, Brannan CI, Reed ML, Ozcelik T, Francke U, Copeland NG, Jenkins NA. 1992. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet 2:259–264.

    PubMed  CAS  Google Scholar 

  93. Reed ML, Leff SE. 1994. Maternal imprinting of human SNRPN, a gene deleted in Prader-Willi syndrome. Nature Genet 6:163–167.

    PubMed  CAS  Google Scholar 

  94. Beckwith JB. 1969. Macroglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects 5:188–196.

    Google Scholar 

  95. Greenwood RD, Sommer A, Rosenthal A, Craenen J, Nadas AS. 1977. Cardiovascular abnormalities in the Beckwith-Wiedemann syndrome. Am J Dis Child 131:293–294.

    PubMed  CAS  Google Scholar 

  96. Shapiro LR, Duncan PA, Davidian MM, Sincer N. 1982. The placenta in familial Beckwith-Wiedemann syndrome. Birth Defects 18:203–206.

    PubMed  CAS  Google Scholar 

  97. Ping AJ, Reeve AE, Law D, Young MR, Boehnke M, Feinberg AP. 1989. Genetic linkage of Beckwith-Wiedemann syndrome to 11pl5. Am J Hum Genet 44:720–723.

    PubMed  CAS  Google Scholar 

  98. Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, Kalbakji A, Cavenee WK. 1989. Familial Wiedemann-Beckwith syndrome and a second Wilms’ tumor locus both map to 11pl5.5. Am J Hum Genet 44:711–719.

    PubMed  CAS  Google Scholar 

  99. Brown KW, Williams JC, Maitland NJ, Mott MG. 1990. Genomic imprinting and the Beckwith-Wiedemann syndrome. Am J Hum Genet 46:1000–1001.

    PubMed  CAS  Google Scholar 

  100. Moutou C, Junien C, Henry I, Bonaiti-Pellie C. 1992. Beckwith-Wiedemann syndrome: a demonstration of the mechanisms responsible for the excess of transmitting in females. J Med Genet 29:217.

    PubMed  CAS  Google Scholar 

  101. Weksberg R, Shen DR, Fei YL, Song QL, Squire J. 1993. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet 5:143–150.

    PubMed  CAS  Google Scholar 

  102. Hedborg F, Holmgren L, Sandstedt B, Ohlsson R. 1994. The cell type-specific 1GF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith-Wiedemann syndrome. Am J Pathol 145(4):802–817.

    PubMed  CAS  Google Scholar 

  103. Cohen MM. 1994. Wiedemann-Beckwith syndrome, imprinting, IGF2 and H19: implications for hemihyperplasia, associated neoplasms and overgrowth. Am J Med Genet 52:233–234.

    PubMed  Google Scholar 

  104. Kubota T, Saitoh S, Matsumoto T, Narahara K, Fukushima Y, Jinno Y, Nikawa N. 1994. Excess functional copy of allele at chromosomal region 11p15 may cause Wiedemann-Beckwith (EMG) syndrome. Am J Med Genet 49:378–383.

    PubMed  CAS  Google Scholar 

  105. Junien C. 1992. Beckwith-Wiedemann syndrome, tumorigenesis and imprinting. Curr Opinion Genet Dev 2:431–438.

    CAS  Google Scholar 

  106. Wiedemann HR. 1983. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur J Pediatr 141:129.

    Google Scholar 

  107. Drut R, Jones M. 1988. Congenital pancreatoblastoma in Beckwith-Wiedemann syndrome: an emerging association. Pediatr Pathol 8:331–339.

    PubMed  CAS  Google Scholar 

  108. Emery LG, Shields M, Shah NR, Garbes A. 1983. Neuroblastoma associated with Beckwith-Wiedemann syndrome. Cancer 52:176–179.

    PubMed  CAS  Google Scholar 

  109. Albrecht S, von Schweinitz D, Waha A, Kraus JA, von Deimling A, Pietsch T. 1994. Loss of maternal alleles on chromosome arm 11p in hepatoblastoma. Cancer Res 54:5041–5044.

    PubMed  CAS  Google Scholar 

  110. Pedone PV, Tirabosco R, Cavazzana AO, Ungaro P, Basso G, Luksch R, Carli M, Bruni CB, Frunzio R, Riccio A. 1994. Mono- and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors. Hum Mol Genet 3:1117–1121.

    PubMed  CAS  Google Scholar 

  111. Wake N, Fujino T, Hoshi S, Shinkai N, Sakai K, Kato H, Hashimoto M, Yasuda T, Yamada H, Ichinoe K. 1987. The propensity to malignancy of dispermic heterozygous moles. Placenta 8:319–326.

    PubMed  CAS  Google Scholar 

  112. Linder D, McCaw B, Hecht F. 1975. Parthenogenetic origin of benign ovarian teratomas. N Engl J Med 292:63–66.

    PubMed  CAS  Google Scholar 

  113. Fearon ER, Vogelstein B, Feinberg AP. 1984. Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumours. Nature 309:176–178.

    PubMed  CAS  Google Scholar 

  114. Toguchida J, Ishizaki K, Sasaki M, Nakamura Y., Ikenaga M, Kato M, Sugimot M, Kotoura Y, Yamamuro T. 1989. Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 338:156–158.

    PubMed  CAS  Google Scholar 

  115. Naumova A, Hansen M, Strong L, Jones PA, Hadjistilianou D, Mastrangelo D, Griegel S, Rajewsky MF, Shields J, Donoso L, Wang M, Sapienza C. 1994. Concordance between parental origin of chromosome 13q loss and chromosome 6p duplication in sporadic retinoblastoma. Am J Hum Genet 54:274–281.

    PubMed  CAS  Google Scholar 

  116. Mannens M, Slater RM, Heyting C, Blick J, dcKraker J, Coad N, dePagter-Holthuizen P, Pearson PL. 1988. Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms’ tumours. Hum Genet 81:41–48.

    PubMed  CAS  Google Scholar 

  117. Slater RM, Mannen M. 1992. Cytogenetics and molecular genetics of Wilms’ tumor of childhood. Cancer Genet Cytogenet 61:111–121.

    PubMed  CAS  Google Scholar 

  118. Steenman MJC, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. 1994. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nature Genet 7:433–438.

    PubMed  CAS  Google Scholar 

  119. Scrable H, Cavenee W, Ghavimi F, Lovell M, Morgan K, Sapienza C. 1989. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc Natl Acad Sci USA 86:7480–7484.

    PubMed  CAS  Google Scholar 

  120. Ekstrom TJ. 1994. Parental imprinting and the IGF2 gene. Horm Res 42:176–181.

    PubMed  CAS  Google Scholar 

  121. Montagna M, Menin C, Chieco-Bianchi L, D’Andrea E. 1994. Occasional loss of constitutive heterozygosity at 11pl5.5 and imprinting relaxation of the IGF II maternal allele in hepatoblastoma. J Cancer Res Clin Oncol 120(12):732–736.

    PubMed  CAS  Google Scholar 

  122. Wada M, Seeger RC, Mizoguchi H, Koeffler HP. 1995. Maintenance of normal imprinting of H19 and IGF2 genes in neuroblastoma. Cancer Res 55(125)3386–3388.

    PubMed  Google Scholar 

  123. Caron H, van Sluid P, van Hoeve M, de Kraker J, Bras J, Slater R, Mannens M, Voute PA, Westerveld A, Versteeg R. 1993. Allelic loss of chromosome lp36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nature Genet 4:187–190.

    PubMed  CAS  Google Scholar 

  124. Haas OA, Argyriou-Tirita A, Lion T. 1992. Parental origin of chromosomes involved in the translocation t(9;22). Nature 359:414–416.

    PubMed  CAS  Google Scholar 

  125. Yamada T, Seeker-Walker LM. 1990. Possible evidence for acquired genetic activity at both chromosomal breakpoints of the Philadelphia translocation in chronic myeloid leukemia. Leukemia 4:341–344.

    PubMed  CAS  Google Scholar 

  126. Schaefer-Rego KE, Leibowitz D, Mears JG. 1990. Chromatin alterations surrounding the BCR/ABL fusion gene in K562 cells. Oncogene 5:1669–1673.

    PubMed  CAS  Google Scholar 

  127. Baumgartner S, Bopp D, Burri M, Noll M. 1987. Structure of the two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesis. Genes Dev 1:1247–1267.

    PubMed  CAS  Google Scholar 

  128. Bopp D, Burri M, Baumgartner S, Frigerio G, Noll M. 1986. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47:1033–1040.

    PubMed  CAS  Google Scholar 

  129. Gruss P, Walther C. 1992. Pax in development. Cell 69:719–722.

    PubMed  CAS  Google Scholar 

  130. Strachan T, Read AP. 1994. Pax genes. Curr Opinion Genet Dev 4:427–438.

    CAS  Google Scholar 

  131. Chalepalas G, Jones FS, Edelman GM, Gruss P. 1994. Pax-3 contains domains for transcription activation and transcription inhibition. Proc Natl Acad Sci USA 91:12745–12749.

    Google Scholar 

  132. Maulbecker C, Gruss P. 1993. The oncogenic potential of Pax genes. EMBO J 12:2361–2367.

    PubMed  CAS  Google Scholar 

  133. Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. 1993. Fusion of PAX 3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res 53:5108–5112.

    PubMed  CAS  Google Scholar 

  134. Sublett JE, Jeon IS, Sapiro DN. 1995. The alveolar rhabdomyosarcoma Pax3/FKHR fusion protein is a transcriptional activator. Oncogene 11:545–552.

    PubMed  CAS  Google Scholar 

  135. Epstein JA, Lam P, Jepeal I., Maas RL, Sapiro DN. 1995. Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem 270:11719–11722.

    PubMed  CAS  Google Scholar 

  136. Davis RJ, D’Cruz CM, Lovell MA, Biegel KA, Barr FG. 1994. Fusion of PAX7 to FKHR by the variant t(l;13)(p36;ql4) translocation in alveolar rhabdomyosarcoma. Cancer Res 54:2869–2872.

    Google Scholar 

  137. Tremblay P, Gruss P. 1994. Pax: genes for mice and men. Pharmacol Therapeut 61:205–226.

    CAS  Google Scholar 

  138. Baldwin CT, Hoth CF, Macina RA, Milunsky A. 1995. Mutations in PAX3 that cause Waadenburg syndrome type I: ten new mutations and review of the literature. Am J Med Genet 58:115–122.

    PubMed  CAS  Google Scholar 

  139. Tremblay P, Kessel M, Gruss P. 1995. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch. Dev Biol 171:317–329.

    PubMed  CAS  Google Scholar 

  140. Wiegel D, Jurgens G, Kuttner F, Seifert E, Jackle H. 1989. The homeotic gene encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658.

    Google Scholar 

  141. Hromas R, Costa R. 1995. The hepatocyte nuclear factor-3/forkhead transcription regulatory family in development, inflammation, and neoplasia. Crit Rev Oncol Hematol 20:129–140.

    PubMed  CAS  Google Scholar 

  142. Pellin A, Boix J, Blesa JR, Noguera R, Carda C, Llombart-Bosch A. 1994. EWS/Fli-1 rearrangement in small cell sarcoma of bone and soft tissue detected by reverse transcriptase polymerase chain reaction amplification. Eur J Cancer 30A:827–831.

    PubMed  Google Scholar 

  143. Ohno T, Rao VN, Reddy ES. 1993. EWS/Fli-1 chimeric protein is a transcriptional activator. Oncogene 9:3087–3097.

    Google Scholar 

  144. Stolow DT, Haynes SR. 1995. Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation. Nucleic Acid Res 23:835–843.

    PubMed  CAS  Google Scholar 

  145. Prasad DD, Rao VN, Reddy ES. 1992. Structure and expression of human Fli-1 gene. Cancer Res 52:5833–5837.

    PubMed  CAS  Google Scholar 

  146. Hromas R, Klemsz M. 1994. The ETS oncogene family in development, proliferation and neoplasia. Int J Hematol 59:257–265.

    PubMed  CAS  Google Scholar 

  147. Maroulakou IG, Papas TS, Green JE. 1994. Differential expression of ets-1 and ets-2 proto-oncogenes during murine embryogenesis. Oncogene 9:1551–1565.

    PubMed  CAS  Google Scholar 

  148. Meyer D, Wolff CM, Stiegler P, Senan F, Befort N, Befort JJ, Remy P. 1993. Xl-fli, the Xenopus homologue of the fli-1 gene, is expressed durig embryogenesis in a restricted pattern evocative of neural crest cell distribution. Mech Dev 44:109–121.

    PubMed  CAS  Google Scholar 

  149. Zhang L, Eddy A, Teng Y-T, Fritzler M, Kluppel M, Melet F, Bernstein A. 1995. An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes. Mol Cell Biol 15:6961–6970.

    PubMed  CAS  Google Scholar 

  150. Zimmerman K, Alt FW. 1990. Expression and function of Myc family genes. Crit Rev Oncogenesis 2:75095.

    Google Scholar 

  151. Rushlow CA, Hogan A, Pinchin SM, Howe KM, Lardelli M, Ish-Horowicz D. 1989. The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N-myc. EMBO J 8:3095–3103.

    PubMed  CAS  Google Scholar 

  152. Fourel G, Transy C, Tennant BC, Buendia MA. 1992. Expression of the woodchuck N-myc2 retroposon in brain and in liver tumors is driven by a cryptic N-myc promoter. Mol Cell Biol 12:5336–5344.

    PubMed  CAS  Google Scholar 

  153. Dildrop R, Ma A, Zimmerman K, Hsu E, Tesfaye A, Depinho R, Alt FW. 1989. IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression. EMBO J 8:1121–1128.

    PubMed  CAS  Google Scholar 

  154. Moens CB, Stanton BR, Parada LF, Rossant J. 1993. Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 119:485–499.

    PubMed  CAS  Google Scholar 

  155. Davis A, Bradley A. 1993. Mutation of N-myc in mice: what does the phenotype tell us? Bioessay 15:273–275.

    CAS  Google Scholar 

  156. Stanton BR, Perkins AS, Tessarillo L, Sassoon DA, Parada LF. 1992. Loss of N-myc function results in embryonic lethality and failure of the epithelial compoment of the embryo to develop. Genes Dev 6:2235–2247.

    PubMed  CAS  Google Scholar 

  157. Vize PD, Vaughan A, Krieg P. 1990. Expression of the N-myc proto-oncogene during the early development of Xenopus laevis. Development 110:885–896.

    PubMed  CAS  Google Scholar 

  158. Kinzler KW, Bigner SH, Bigner DD, Trent JM, Law ML, O’Brien SJ, Wong AJ, Vogelstein B. 1987. Identification of an amplified, highly expressed gene in a human glioma. Science 236:70–73.

    PubMed  CAS  Google Scholar 

  159. Roberts WM, Douglass EC, Peiper SC, Houghton PJ, Look AT. 1989. Amplification of the gli gene in childhood sarcomas. Cancer Res 49:5407–5413.

    PubMed  CAS  Google Scholar 

  160. Dominguez M, Brunner M, Hafen E, Basler K. 1996. Sending and receiving the Hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272:1621–1625.

    PubMed  CAS  Google Scholar 

  161. Hodgkin J. 1983. Two types of sex determination in a nematode. Nature 304:267–268.

    PubMed  CAS  Google Scholar 

  162. Vortkamp A, Gessler M, Grzeschik KH. 1991. Gli3 zinc-finger gene interrupted by translocation in Greig syndrome families. Nature 352:539–540.

    PubMed  CAS  Google Scholar 

  163. Schimmang T, Lemaistre M, Vortkamp A, Ruther U. 1992. Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 116:799–804.

    PubMed  CAS  Google Scholar 

  164. Walterhouse D, Ahmed M, Slusarski D, Kalamaras J, Boucher D, Holmgren R, Iannaccone P. 1993. gli, a zinc finger transcription factor and oncogene is expressed during normal mouse development. Dev Dyn 196:91–102.

    PubMed  Google Scholar 

  165. Hui C, Slusarski D, Platt K, Holmgren R, Joyner A. 1994. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Cli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 162:402–413.

    PubMed  CAS  Google Scholar 

  166. Riley DJ, Lee EY-HP, Lee W-H. 1994. The retinoblastoma protein: more than a tumor suppressor. Annu Rev Cell Biol 10:1–29.

    PubMed  CAS  Google Scholar 

  167. Bernards R, Schackleford GM, Gerber MR, Horowitz JM, Friend SH, Schartl M, Bogenmann E, Rapaport JM, McGee T, Dryja TP, Weinberg RA. 1989. Structure and expression of the murine retinoblastoma gene and characterization of its encoded protein. Proc Natl Acad Sci USA 86:6474–6478.

    PubMed  CAS  Google Scholar 

  168. Szekely L, Jiang QW, Bulic-Jakus F, Rosen A, Ringertz N, Klein G, Wiman KG. 1992. Cell type and differentiation dependent heterogeneity in retinoblastoma protein expression in SCID mouse fetuses. Cell Growth Differ 3:149–156.

    PubMed  CAS  Google Scholar 

  169. Clarke AR, Maandag ER, van Roon M, van der Lugt NMT, van der Valk M, Hooper ML, Berns A, te Riele H. 1992. Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330.

    PubMed  CAS  Google Scholar 

  170. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. 1992. Effects of an Rb mutation in the mouse. Nature 359:295–300.

    PubMed  CAS  Google Scholar 

  171. Lee EYH, Chang CY, Hu N, Wang YCJ, Lai CC, Herrup K, Lee WH, Bradley A. 1992. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294.

    PubMed  CAS  Google Scholar 

  172. Bignon YJ. 1993. Expression of a retinoblastoma transgene results in dwarf mice. Genes Dev 7:1654–1662.

    PubMed  CAS  Google Scholar 

  173. Chang CY, Riley DJ, Lee EY-HP, Lee WH. 1993. Quantitative effects of the retinoblastoma gene on mouse development and tissue-specific tumorigenesis. Cell Growth Differ 4:1057–1064.

    PubMed  CAS  Google Scholar 

  174. Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH. 1991. The retinoblastoma gene product regulates progression throgh the Gl phase of the cell cycle. Cell 67:293–302.

    PubMed  CAS  Google Scholar 

  175. Lee WH, Chen PG, Riley D. 1995. Regulatory networks of the retinoblastoma protein. Ann N Y Acad Sci 752:432–445.

    PubMed  CAS  Google Scholar 

  176. Clarke AR. 1995. Murine model of neoplasia: functional analysis of the tumor suppressor genes Rb-1 and p53. Cancer Metastasis Rev 14:125–148.

    PubMed  CAS  Google Scholar 

  177. Kastan MB, Canman CE, Leonard CJ. 1995. p53, cell cycle, control and apoptosis: implications for cancer. Cancer Metastasis Rev 14:3–15.

    PubMed  Google Scholar 

  178. Clarke AR. 1995. Murine model of neoplasia: functional analysis of the tumor suppressor genes Rb-1 and p53. Cancer Metastasis Rev 14:125–148.

    PubMed  CAS  Google Scholar 

  179. Lee JM, Bernstein A. 1995. Apoptosis, cancer and the p53 tumor suppressor gene. Cancer Metastasis Rev 14:149–161.

    PubMed  CAS  Google Scholar 

  180. Malkin D. 1993. p53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 66:83–92.

    PubMed  CAS  Google Scholar 

  181. Rotter V, Aloni-Grinstein R, Schwartz D, Elkind NB, Simons A, Wolkowicz R, Lavigne M, Beserman P, Kapon A, Goldfinger N. 1994. Does wild type p53 play a role in normal cell differentiation? Semin Cancer Biol 5:229–236.

    PubMed  CAS  Google Scholar 

  182. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR. 1995. High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:931–936.

    PubMed  CAS  Google Scholar 

  183. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T. 1995. A subset of p53-deficient embryos exhibit exencephaly. Nature Gen 10:175–180.

    CAS  Google Scholar 

  184. Lavidueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A. 1989. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9:3982–3991.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walterhouse, D.O., Yoon, J.W. (1997). Embryonic development and pediatric oncogenesis. In: Walterhouse, D.O., Cohn, S.L. (eds) Diagnostic and Therapeutic Advances in Pediatric Oncology. Cancer Treatment and Research, vol 92. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5767-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5767-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7643-9

  • Online ISBN: 978-1-4615-5767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics