Skip to main content

The Use of Fuzzy Preference Models in Multiple Criteria Choice, Ranking and Sorting

  • Chapter
Fuzzy Sets in Decision Analysis, Operations Research and Statistics

Part of the book series: The Handbooks of Fuzzy Sets Series ((FSHS,volume 1))

Abstract

This chapter presents several approaches to derive a recommendation from a fuzzy relational preference model. Depending on the specificities of the decision problem, the recommendation can be a selection of the best alternatives, a ranking of these alternatives or a classification. In many decision problems involving several criteria and/or several experts with possibly conflicting evaluations of the alternatives, deriving a clear prescription is not an easy task since the overall fuzzy preference model is usually neither transitive nor complete. In this chapter, we present methods that have been specially designed to face this difficulty. We first consider the problem of choosing from a fuzzy preference relation. The classical notions of non-dominated alternatives and core are introduced (§ 3.1). Then several choice functions based on the use of scores, covering relations and kernels respectively are presented in sections (§ 3.2-3.5). Finally, a brief survey of ranking and sorting procedures is proposed (§ 3.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggoun A. and Beldiceanu N. (1991) Overview of the CHIP compiler system, in Proc. ICLP 91, MIT Press.

    Google Scholar 

  • Aizerman M. A. (1985) New problems in the general choice theory: review of a research trend, Social Choice and Welfare 2, 235–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Aizerman M. A. and Malishevski A.V. (1981) General theory of best variants choice: Some Aspects, IEEE Trans. Automat. Control,. 26, 1030–1040.

    Article  MathSciNet  MATH  Google Scholar 

  • Arrow K. J. (1963) Social Choice and Individual Values, John Wiley and Sons, Inc., New-York.

    Google Scholar 

  • Banerjee A.(1993) Rational choice under fuzzy preferences: The Orlovsky choice function, Fuzzy Sets and Systems, 54, 295–300.

    Google Scholar 

  • Barrett C. R., Pattanaik, P. K., Salles, M. (1990), On choosing rationally when Preferences are fuzzy, Fuzzy Sets and; Systems 2, 197–212.

    Article  MathSciNet  Google Scholar 

  • Berge Cl. (1958) Théorie des graphes et ses applications, Dunod, Paris.

    Google Scholar 

  • Bezdek J., Spillman B. and Spillman R. (1978) A fuzzy relation space for group decision theory, Fuzzy Sets and; Systems 1, 255–268.

    Article  MathSciNet  MATH  Google Scholar 

  • Bisdorff R and Roubens M (1996) On defining kernels on L-fuzzy binary relations, IPMU Conference, Granada, July.

    Google Scholar 

  • Bondareva O. N. (1990a) Revealed Fuzzy Preferences, Universitat Bielefeld/IMW, Institute of Math. Economics. Working paper no. 183.

    Google Scholar 

  • Bondareva O. N.(1990b) Revealed fuzzy preferences, J. Kacprzyk and M. Fedrizzi, Eds., Multiperson Decision Making Using Fuzzy Sets and Possibility Theory, Kluwer Acad. Publ., 71–79.

    Google Scholar 

  • Bordes G. (1983) On the possibility of reasonable consistent majoritarian choice: some positive results, Journal of Economic Theory 31, 122–132.

    Article  MATH  Google Scholar 

  • Bortolan G. and Degani R. (1985) A review of some methods for ranking fuzzy subsets, Fuzzy Sets and Systems, 15, 1–19, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchon B. (1987) Preferences deduced from fuzzy questions, J. Kacprzyk and S. A. Orlovski, Eds., Optimization Models Using Fuzzy Sets and Possibility Theory, D. Reidei Publ. Co., Dordrecht, Boston, Lancaster, Tokyo, 110–122.

    Google Scholar 

  • Bouyssou D. (1991) A note on the min in favor ranking method for valued preference relations, in: M. Cerny, D. Gluckaufova and D. Loula (Eds.), Proc. International Workshop on Multicriteria Decision Making — Methods — Algorithms — Applications, 16–25, Czechoslovak.

    Google Scholar 

  • Bouyssou D. (1992a) Ranking methods based on valued preference relations: a characterization of the net flow method, European Journal of Operationnal Research 60, 61–68.

    Article  MATH  Google Scholar 

  • Bouyssou D. (1992b) A note on the sum of differences choice function for fuzzy preference relations, Fuzzy sets and systems 47, 197–202.

    Article  MathSciNet  MATH  Google Scholar 

  • Bouyssou D. and Perny P. (1992) Ranking methods for valued preference relations: a characterization of a method based on leaving and entering flows, European Journal of Operationnal Research 61, 186–194.

    Article  MATH  Google Scholar 

  • Brans J. P. and Vincke Ph. (1985) A preference ranking organization method, Management Science 31, 6, 647–656.

    Article  MathSciNet  Google Scholar 

  • Cook W. D. and Seiford L. M. (1978) Priority Ranking and Consensus Formation, Management Science 24, 16, 1721–1732.

    Article  Google Scholar 

  • Cook W. D., Kress M. and Seiford L. M. (1986) An axiomatic Approach to Distance on Partial Orderings, RAIRO Recherche Opérationnelle 20, 2, 115–122.

    MathSciNet  MATH  Google Scholar 

  • Doignon J. P, B. Monjardet, M. Roubens and Ph. Vincke (1986) Biorders families, valued relations and preference modelling, J. Math. Psych. 30, 435–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Dincbas M., Van Hentenrynck P. and Simonis H. (1990) Solving large combinatorial problems in logic programming, Journal of Logic Programming 8, 1 & 2.

    Article  Google Scholar 

  • Fishburn P. C.(1970) Utility Theory for Decision Making, John Wiley & Sons, Inc., New York, London, Sydney, Toronto.

    MATH  Google Scholar 

  • Fishburn P. C. (1977) Condorcet Social Choice functions, SIAM Journal of applied Mathematics 33, 469–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Floyd R. (1962), Algoritm 97: Shortest Path, Communications of the ACM 5,6, 345.

    Article  Google Scholar 

  • Fodor J. C. (1992) Traces of fuzzy binary relations, Fuzzy Sets and; Systems 50, 331–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Fodor J. C. (1995) Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems 69, 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Fodor J. C. and Roubens M. (1994), Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, Dordrecht.

    Book  MATH  Google Scholar 

  • Fodor J. C. and Roubens M. (1995), Structure of transitive valued binary relations, Math. Soc. Sci. 30, 71–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Henriet L. and Perny P. (1996), Méthodes multicritères non-compensatoires pour la classification floue d’objets, LFA′96, 4-5 December, 9–15.

    Google Scholar 

  • Kim J. B. (1983) Fuzzy rational choice functions, Fuzzy Sets and Systems, 10, 37–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Kitainik L (1993) Fuzzy Decision Procedures with Binary Relations. Towards a Unified Theory, Kluwer Academic Publishers, Dordrecht.

    Book  MATH  Google Scholar 

  • Kuzmin V. B. and Ovchinnikov S. V. (1980a) Group decisions I — in arbitrary spaces of fuzzy binary relations, Fuzzy Sets and Systems, 4, 53–62.

    Article  MathSciNet  Google Scholar 

  • Kuzmin V. B. and Ovchinnikov S. V. (1980b) Design of group decisions II — in spaces of partial ordered fuzzy relations, Fuzzy Sets and Systems, 4, 153–165.

    Article  MathSciNet  Google Scholar 

  • Kuzmin V. B. and Travkin S. I. (1987) Fuzzy choice, J. Kacprzyk and S. A. Orlovski, Eds., Optimization Models Using Fuzzy Sets and Possibility Theory, D. Reidei Publ. Co., Dordrecht, Boston, Lancaster, Tokyo, 99–109.

    Google Scholar 

  • Leclerc B. (1984) Efficient and binary consensus functions on transitively valued relations, Mathematical Social Sciences, 8, 45–61.

    Article  MathSciNet  MATH  Google Scholar 

  • Luce R. D. (1958) A probabilistic theory of utility, Econometrica 26, 193–224.

    Article  MathSciNet  MATH  Google Scholar 

  • Massaglia R. and Ostanello A. (1991) N-TOMIC: A decision support for multicriteria decision Problems, in P. Korhonen (ed.): International Workshop on Multicriteria Decision Support — Lecture notes in Economics and Mathematical Systems 356, Springer-Verlag, Berlin, 167–174.

    Google Scholar 

  • Matarazzo B. (1986) Multicriterion analysis by means of pairwise actions and criterion comparisons (MAPPAC), Applied Mathematics and Computation 18, 2, 119–141.

    Article  MathSciNet  Google Scholar 

  • Matarazzo B. (1988), Preference ranking global frequencies in multicriterion analysis (PRAGMA), European Journal of Operational Research 36, 1, 36–50.

    Article  MathSciNet  Google Scholar 

  • Miller N. R. (1980) A new solution set of tournaments and majority voting: further graph-theoretical approaches to the theory of voting, American Journal of Political Science 24, 68–96.

    Article  Google Scholar 

  • von Neumann J. and Morgenstern O. (1947) Theory of Games and Economic behavior, J. Wiley, New York.

    MATH  Google Scholar 

  • Montero F. J. and Tejada J. (1986) Some problems on the definition of fuzzy preference relations, Fuzzy Sets and Systems 20, 45–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Montero F. J. and Tejada J. (1988) A necessary and sufficient condition for the existence of Orlovski’s choice set, Fuzzy Sets and Systems 26, 121–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Orlovski S. A. (1978) Decision-making with a fuzzy preference relation, Fuzzy Sets and Systems,. 1, 155–167.

    Article  MathSciNet  Google Scholar 

  • Ovchinnikov S. (1981) Structure of fuzzy binary relations, Fuzzy Sets and Systems 1, 169–195.

    Article  MathSciNet  Google Scholar 

  • Ovchinnikov S. (1984) Representation of transitive fuzzy relations, in: H. J. Skala, S. Termini and E. Trillas, eds., Aspects of Vagueness, D. Reidel Publishing Company, Dordrecht, 105–118.

    Chapter  Google Scholar 

  • Ovchinnikov S. (1987) Preference and choice in a fuzzy environment, J. Kacprzyk and S. A. Orlovski, Eds., Optimization Models Using Fuzzy Sets and Possibility Theory, D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, Tokyo, 91–98.

    Google Scholar 

  • Ovchinnikov S. (1991) Social Choice and Lukasiewicz logic, Fuzzy sets and systems 43, 319–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Ovchinnikov S. V. and Ozernoy V.(1988) Using fuzzy binary relations for identifying noninferior decision alternatives, Fuzzy Sets and Systems, 25, 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Ovchinnikov S. V. and Roubens M. (1991), On strict preference relations, Fuzzy Sets and Systems, 43, 319–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Perny P. (1990) Building and Exploitation of relational Systems of fuzzy preferences, in: Extended Abstracts of the third IMPU conference, June 2-6, Paris, France, 431–433.

    Google Scholar 

  • Perny P. (1992a) Modélisation, Agrégation et exploitation de préférences floues dans une problématique de rangement: bases axiomatiques, procédures et logiciel, PhD thesis, Paris-Dauphine University and LAFORIA document 9.

    Google Scholar 

  • Perny P. (1992b) Sur le non respect de l’axiome d’independance dans les méthodes de type Electre, in:Développements récents en Recherche Opérationnelle: Etat de l’Art, Cahiers du CERO 34, 211–232.

    Google Scholar 

  • Perny P. (1995) Defining fuzzy covering relations for decision aid, in: B. Bouchon, R. Yager, L. Zadeh (Eds.), Fuzzy Logic and soft Computing, Advances in Fuzzy Systems — Applications and Theory, 4, 109–218.

    Google Scholar 

  • Perny P. (1997) Multicriteria Filtering Methods based on Concordance and Non-Discordance principles, Annals of OR, Special issue on Preference Modelling, to appear.

    Google Scholar 

  • Perny P. and. Roy B. (1992) The use of fuzzy Outranking Relations in Preference Modelling, Fuzzy sets and Systems 49, 33–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Pirlot M. (1994) A characterization of min as a procedure for exploiting valued preference relations and related results, working paper (Faculté Polytechnique de Mons).

    Google Scholar 

  • Rapoport A. (1989) Decision Theory and Decision Behavior. Normative and Descriptive Approaches, Kluwer Acad. Publ., Dordrecht, Boston, London.

    Google Scholar 

  • Riguet (1951) Les relations de Ferrers, Comptes Rendus de l’Académie des Sciences de Paris 232, 1729–1730.

    MathSciNet  MATH  Google Scholar 

  • Roth A. E. (1976) Subsolutions and the supercore of cooperative games, Mathematical of Operations Research, 1.

    Google Scholar 

  • Roubens M. (1989) Some properties of Choice functions based on binary relations, European Journal of Operational Research, 40, 309–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Roubens M. and Vincke Ph. (1987) Fuzzy preferences in an optimization perspective, J. Kacprzyk and S. A. Orlovski, Eds., Optimization Models Using Fuzzy Sets and Possibility Theory, D. Reidei Publ. Co, Dordrecht, Boston, Lancaster, Tokyo, 77–90.

    Google Scholar 

  • Roubens M. (1996) Choice procedures in fuzzy multicriteria decision analysts based on pairwise comparisons, Fuzzy Sets and Systems, 92, 2, to appear.

    Google Scholar 

  • Roy B. (1968) Classement et choix en présence de points de vue multiples (la méthode ELECTRE), Cahiers du CERO 8, 57–75.

    Google Scholar 

  • Roy B. (1978) ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples, Cahiers du CERO 20, 1, 3–24.

    Google Scholar 

  • Roy B. (1981) A multicriteria analysis for trichotomic segmentation problems, in P. Nijkamp and J. Spronk (eds.), Multiple Criteria Analysis: Operational methods, Gower Press, 245–257.

    Google Scholar 

  • Roy B. and Bertier P. (1973) La méthode ELECTRE II — Une application au media planning, Operational Research ′72, M. Ross (ED.), North-Holland Publishing Compagny, 9, 291–302.

    Google Scholar 

  • Roy B. and Moscarola J. (1977) Procédure automatique d’examen des dossiers fondée sur une segmentation trichotomique en présence de critères multiples, RAIRO Recherche Opérationnelle 11, 145–173.

    MathSciNet  MATH  Google Scholar 

  • Roy B. and Bouyssou D. (1994) Aide Multicritère à la décision: Méthodes et Cas, Economica, Paris.

    Google Scholar 

  • Saaty T. L.(1978) Exploring the interface between hierarchies, multiple objectives and fuzzy sets, Fuzzy Sets and Systems,. 1, 57–68.

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty T. L. (1980) The Analytical Hierarchy Process, McGraw Hill, New York.

    Google Scholar 

  • Schwartz T. (1986) The logic of collective choice, Columbia University Press, New York.

    Google Scholar 

  • Sen A. K. (1971) Choice functions and revealed preferences, Review of Economic Studies 38, 307–313.

    Article  MATH  Google Scholar 

  • Slowinski R. (1993) Rough set learning of preferential attitude in multi-criteria decision making,. in: J. Komorowski & Z. Ras (eds.), Methodologies for Intelligent Systems. Lecture Notes in Artificial Intelligence 689, Springer-Verlag, Berlin, 642–651.

    Chapter  Google Scholar 

  • Slowinski R. and Stefanowski J. (1994) Rough classification with valued closeness relation,. in: E. Diday, Y. Lechevallier, M. Schader, P. Bertrand, B. Burtschy (Eds.), New Approaches in Classification and Data Analysis. Springer-Verlag, Berlin, 482–489.

    Chapter  Google Scholar 

  • Valverde L. (1985) On the structure of F-indistinguishability operators, Fuzzy Sets and Systems 17, 313–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Hentenryck P. (1989) Constraint Satisfaction in Logic Programming, MIT Press.

    Google Scholar 

  • Vincke Ph. (1992) Multicriteria Decision Aid, Wiley.

    Google Scholar 

  • Warshall S. (1962) A theorem on boolean Matrices, Journal of the ACM, 9, 1, 11–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu W. (1992) Aide Multicritére à la décision dans le cadre de la problématique du tri, Concepts méthodes et applications, PhD thesis, Paris-Dauphine University.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fodor, J., Orlovski, S., Perny, P., Roubens, M. (1998). The Use of Fuzzy Preference Models in Multiple Criteria Choice, Ranking and Sorting. In: Słowiński, R. (eds) Fuzzy Sets in Decision Analysis, Operations Research and Statistics. The Handbooks of Fuzzy Sets Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5645-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5645-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7583-8

  • Online ISBN: 978-1-4615-5645-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics