Skip to main content

Triterpenes and Steroids

  • Chapter
Plant Secondary Metabolism

Abstract

Triterpenes constitute a significant portion of the lipid substances of all plants; more than 4000 triterpenoids have been isolated. These compounds are precursors to steroids in both plants and animals. Steroids are components of membranes in plants. Both triterpenes and steroids occur free, as glycosides (Boar and Allen, 1973), or in other combined forms. Correct structures for many were not forthcoming until about 1940 (Connolly and Overton, 1972). The structures of triterpenes and steroids may be subdivided into about 40 major types (Fig. 23.1) (Connolly and Hill, 1991; Devon and Scott, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, I, U. Sankawa, and Y. Ebizuka, Purification of 2,3-oxido-squalene: ß-amyrin cyclase from pea seedlings, Chem. Pharm. Bull., 37, 536–538 (1989a).

    CAS  Google Scholar 

  • Abe, I., Y. Ebizuka, S. Seo, and U. Sankawa, Purification of squalene-2,3-epoxide cyclases from cell suspension cultures of Rabdosia japonica Hara, FEBS Lett., 249, 100–104 (1989b).

    CAS  Google Scholar 

  • Agnew, W. S. and G. Popjk, Squalene synthetase. Solubilization from yeast microsomes of a phospholipid-requiring enzyme, J. Biol. Chem., 253, 4574–4583 (1978).

    PubMed  CAS  Google Scholar 

  • Andersen, J. F. and R. L. Metcalf, Factors influencing distribution of Diabrotica spp. in blossoms of cultivated Cucurbita spp., J. Chem. Ecol., 13, 681–699 (1987).

    CAS  Google Scholar 

  • Arisawa, M., J. M. Pezzuto, A. D. Kinghorn, G. A. Cordell, and N. R. Farnsworth, Plant anticancer agents. XXX. Cucurbitacins from Ipomopsis aggregata, J. Pharm. Sci., 73, 411–413 (1984).

    PubMed  CAS  Google Scholar 

  • Balliano, G., O. Caputo, F. Viola, L. Delprino, and L. Cattel, Cyclization of squalene-2,3-epoxide to 10α-cucurbita-5,24-dien-3ß-ol by microsomes from Cucurbita maxima seedlings, Phytochemistry, 22, 915–921 (1983).

    CAS  Google Scholar 

  • Banthorpe, D. V. and B. V. Charlwood, The terpenoids, in Secondary Plant Products (E. A. Bell and B. V. Charlwood, eds.), 185–220, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  • Bavovada, R., G. Blaskö, H. Shieh, G. M. Pezzuto, and G. A. Cordell, Spectral assignment and cytoxicity of 22-hydroxy tingetone from Glyptopetalum sclerocarpum, Planta Medica, 56, 380–382 (1990).

    PubMed  CAS  Google Scholar 

  • Belingheri, L., P. Beyer, H. Kleinig, and M. Gleizes, Solubilization and partial purification of squalene synthase from daffodil microsomal membranes, FEBS Lett., 292, 34–36 (1991).

    PubMed  CAS  Google Scholar 

  • Blaskö, G. and G. A. Cordell, Chemistry of plant-derived anticancer agents, in Economic and Medicinal Plant Research, Vol. 2 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 119–191, Academic Press, London, 1988.

    Google Scholar 

  • Boar, R. B. and J. Allen, ß-Amyrin triterpenoids, Phytochemistry, 12, 2571–2578 (1973).

    Google Scholar 

  • Borris, R. P. and J. M. Schaeffer, Antiparasitic agents from plants, in Phytochemical Resources for Medicine and Agriculture (H. N. Nigg and D. S. Seigler, eds.), 117–158, Plenum Press, New York, 1992.

    Google Scholar 

  • Bowers, W. S., Insect hormones and antihormones in plants, in Herbivores: Their Interactions with Secondary Plant Metabolites (G. A. Rosenthal and M. R. Berenbaum, eds.), 431–456, Academic Press, San Diego, CA, 1991.

    Google Scholar 

  • Butenandt, A. and P. Karlson, Ueber die Isolierung eines Metamorphosehormone der Insekten in kristallisierten Form, Z. Naturforsch., 9b, 389–391 (1954).

    CAS  Google Scholar 

  • Camps, F., Plant eedysteroids and their interaction with insects, in Ecological Chemistry and Biochemistry of Plant Terpenoids (J. B. Harborne and F. A. Tomás-Barberán, eds.), Phytochemistry Society of Europe Vol. 31, 331–376, Clarendon, Oxford, 1991.

    Google Scholar 

  • Carroll, C. R. and C. A. Hoffman, Chemical feeding deterrent mobilized in response to insect herbivory and counteradaption by Epilachna tredecimnotata, Science, 209, 414–416 (1980).

    PubMed  CAS  Google Scholar 

  • Chitwood, D. J., R. Lozano, W. R. Lusby, M. J. Thompson, and J. A. Svoboda, Metabolism and function of sterols in nematodes, in Ecology and Metabolism of Plant Lipids (G. Fuller and W. D. Nes, eds.), ACS Symposium Series 325, 200–217, American Chemical Society, Washington, DC, 1987.

    Google Scholar 

  • Coates, R. M., Biogenetic-type rearrangements of terpenes, Fortschr. Chem. Org. Naturst., 33, 73–230 (1976).

    PubMed  CAS  Google Scholar 

  • Connolly, J. D. and R. A. Hill, Triterpenoids, Nat. Prod. Rep., 6, 475–501 (1991).

    Google Scholar 

  • Connolly, J. D. and K. H. Overton, The triterpenoids, in Chemistry of Terpenes and Terpenoids (A. A. Newman, ed.), 207–287, Academic Press, London, 1972.

    Google Scholar 

  • Cordell, G. A., Anticancer agents from plants, in Progress in Phytochemistry Vol. 5 (L. Reinhold, J. B. Harborne, and T. Swain, eds.), 273–316, Pergamon, London, 1978.

    Google Scholar 

  • Coscia, C. J., Terpenoids, Vol. 1 of Handbook of Chromatography (G. Zweig and J. Sherma, eds.), CRC Press, Boca Raton, FL, 1984.

    Google Scholar 

  • Croteau, R. and M. A. Johnson, Biosynthesis of terpenoid wood extractives, in Biosynthesis and Biodegradation of Wood Compounds (T. Higuchi, ed.), 379–439, Academic Press, Orlando, FL, 1985.

    Google Scholar 

  • Davies, T. G., W., J. S. Lockley, R. Boid, H. H. Rees, and T. W. Goodwin, Mechanism of formation of the A/B cis ring junction of ecdysteroids in Polypodium vulgare, Biochem. J., 190, 537–544 (1980).

    PubMed  CAS  Google Scholar 

  • De Luca, H. and H. K. Schnoes, Vitamin D: Recent advances, Annu. Rev. Biochem., 52, 411–439 (1983).

    Google Scholar 

  • Devon, T. K. and A. I. Scott, Handbook of Naturally Occurring Compounds, Academic Press, New York, 1972.

    Google Scholar 

  • Dreyer, D. L. and E. K. Trousdale, Cucurbitacins in Purshia tridentata, Phytochemistry, 17, 325–326 (1978).

    CAS  Google Scholar 

  • Eichenberger, W., Steryl glycosides and acylated steryl glycosides, in Lipids and Lipid Polymers in Higher Plants (M. Tevini and H. K. Lichtenthaler eds.), 169–182, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  • Elliger, C. A. and A. C. Waiss, Jr., Insect growth inhibitors from Petunia and other solanaceous plants, in Insecticides of Plant Origin (J. T. Arnason, B. J. R. Philogène, and P. Morand, ed.), ACS Symposium Series 387, 188–206, American Chemical Society, Washington, DC, 1989.

    Google Scholar 

  • Elliger, C. A., M. E. Benson, W. F. Haddon, R. E. Lundin, A. C. Waiss, Jr., and R. Y. Wong, Petuniasterones, novel ergostane-type steroids of Petunia hybrida Vilm. (Solanaceae) having insect-inhibitory activity. X-ray molecular structure of the 22,24,25-[(methoxycarbonyl)orthoacetate] of 7α,22,24,25-te-trahydroxyergosta-l,4-dien-3-one and of 1α-acetoxy-24,25-epoxy — 7α — hydroxy — 22 — (methylthiocarbonyl)acetoxyergost — 4 — en-3-one, J. Chem. Soc., Perkin I, 711–717 (1988).

    Google Scholar 

  • Eschenmoser, A., L. Ruzicka, O. Jeger, and D. Arigoni, Zur Kenntnis der Triterpene. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen, Helv. Chim. Acta, 38, 1890–1904 (1955).

    CAS  Google Scholar 

  • Fang, X., C. H. Phoebe Jr., J. M. Pezzuto, H. H. H. Fong, N. R. Farnsworth, B. Yellin, and S. M. Hecht, Plant anticancer agents, XXXIV. Cucurbitacins from Elaeocarpus dolichostylus, J. Nat. Prod., 47, 988–993 (1984).

    PubMed  CAS  Google Scholar 

  • Farnsworth, N. R., A. S. Bingel, G. A. Cordell, F. A. Crane, and H. H. S. Fong, Potential value of plants as sources of new antifertility agents I, J. Pharm. Sci., 64, 535–598 (1975a).

    PubMed  CAS  Google Scholar 

  • Farnsworth, N. R., A. S. Bingel, G. A. Cordell, F. A. Crane, and H. H. S. Fong, Potential value of plants as sources of new antifertility agents II, J. Pharm. Sci., 64, 717–754 (1975b).

    PubMed  CAS  Google Scholar 

  • Ferguson, J. F. and R. L. Metcalf, Cucurbitacins. Plant-derived defense compounds for Diabroticites (Coleoptera: Chrysomelidae), J. Chem. Ecol., 11, 311–318 (1985).

    CAS  Google Scholar 

  • Fischer, N. H., N. Tanrisever, and G. B. Williamson, Allelopathy in the Florida scrub community as a model for natural herbicide actions, in Biologically Active Natural Products: Potential Use in Agriculture (H. G. Cutler, ed.), ACS Symposium Series 380, 233–249, American Chemical Society, Washington, DC, 1988.

    Google Scholar 

  • Fischer, N. H., G. B. Williamson, J. D. Weidenhamer, and D. R. Richardson, In search of allelopathy in the Florida scrub: The role of terpenoids, J. Chem. Ecol., 20, 1355–1380 (1994).

    CAS  Google Scholar 

  • Fogelman, J. C. and L. Armstrong, Ecological aspects of cactus triterpene glycosides I. Their effect on fitness components of Drosophila mojavensis, J. Chem. Ecol., 15, 663–676 (1989).

    Google Scholar 

  • Frank, M. R. and J. C. Fogleman, Involvement of cytochrome P-450 in host-plant utilization by Sonoran Desert Drosophila, Proc. Natl. Acad. Sci. USA, 89, 11998–12002 (1992).

    PubMed  CAS  Google Scholar 

  • Gershenzon, J. and R. Croteau, Terpenoids, in Herbivores: Their Interactions with Secondary Plant Metabolites (G. A. Rosenthal and M. R. Berenbaum, eds.), 165–249, Academic Press, San Diego, CA, 1991.

    Google Scholar 

  • Geuns, J. M. C, Steroid hormones and plant growth and development, Phytochemistry, 17, 1–14 (1978).

    CAS  Google Scholar 

  • Goad, L. J., The biosynthesis of plant sterols, in Lipids and Lipid Polymers in Higher Plants (M. Tevini and H. K. Lichtenthaler, eds.), 146–168, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  • Goad, L. J., Phytosterols, in Terpenoids (B. V. Charlwood and D. V. Banthorpe, eds.), Vol. 7 of Methods in Plant Biochemistry (P. M. Dey and J. B. Harborne, eds.), 369–434, Academic Press, London, 1991a.

    Google Scholar 

  • Goad, L. J., Inhibition of phytosterol biosynthesis and the consequences for plant growth, in Ecological Chemistry and Biochemistry of Plant Terpenoids (J. B. Harborne and F. A. Tomás-Barberán, eds.), Phytochemistry Society of Europe Vol. 31, 209–229, Clarendon, Oxford, 1991b.

    Google Scholar 

  • Goad, L. J. and T. W. Goodwin, The biosynthesis of plant sterols, in Progress in Phytochemistry Vol. 3 (L. Reinhold and Y. Liwschitz, eds.), 357–362, Wiley-Interscience, 1973.

    Google Scholar 

  • Goodwin, T. W., Recent developments in the biosynthesis of plant triterpenoids, in Terpenoids: Structure, Biogenesis and Distribution, Vol. 6 (V. C. Runeckles and T. J. Mabry, eds.), 97–115, Academic Press, London, 1973.

    Google Scholar 

  • Goodwin, T. W., Biosynthesis of sterols, in Lipids: Structure and Function (P. K. Stumpf, ed.), Vol. 4 of Biochemistry of Plants (P. K. Stumpf and E. E. Conn, eds.), 485–507, Academic Press, New York, 1980.

    Google Scholar 

  • Goodwin, T. W., Biosynthesis of plant sterols and other triterpenoids, in Biosynthesis of Isoprenoid Compounds, Vol. 1 (J. W. Porter and S. L. Spurgeon, eds.), 443–480, Wiley, New York, 1981.

    Google Scholar 

  • Goodwin, T. W., Membrane-bound enzymes in plant sterol biosynthesis, in The Enzymes of Biological Membranes, 2nd ed. (A. N. Martonosi, ed.), 205–226 Plenum Press, New York (1985).

    Google Scholar 

  • Goodwin, T. W., N. J. Desouza, E. L. Ghisalberti, and H. H. Rees, Studies on insect moulting hormones: Biosynthesis of ecdysone, ecdysterone, and 5ß-hydroxyecdysterone in Polypodium vulgäre, Phytochemistry, 9, 1247–1252 (1970).

    Google Scholar 

  • Grove, M. D., G. F. Spencer, W. K. Rohwedder, N. Mandava, J. F. Wooley, J. D. Warthen, Jr., G. L. Steffence, J. L. Flippen-Anderson, and J. C. Cook, Jr., Brassinolide, a potent growth-promoting steroid isolated from Brassica napus pollen, Nature, 225, 1065–1066 (1979).

    Google Scholar 

  • Grunwald, C, Plant sterols, Annu. Rev. Plant Phys., 26, 209–236 (1975).

    CAS  Google Scholar 

  • Grunwald, C, Steroids, in Secondary Plant Products (E. A. Bell and B. V. Charlwood, eds.), 221–256, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  • Harborne, J. B., Introduction to Ecological Biochemistry, Academic Press, New York, 1982.

    Google Scholar 

  • Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 4, 323–344 (1986).

    Google Scholar 

  • Harborne, J. B., Chemical signals in the ecosystem, Ann. Bot., 60(Suppl. 4), 39–57 (1987).

    CAS  Google Scholar 

  • Harborne, J. B., Recent advances in chemical ecology, Nat. Prod. Rep., 7, 85–109 (1989).

    Google Scholar 

  • Harrison, D. M., The biosynthesis of triterpenes and steroids, Nat. Prod. Rep., 2, 525–560 (1985).

    PubMed  CAS  Google Scholar 

  • Harrison, D. M., The biosynthesis of triterpenes, steroids, and carotenoids, Nat. Prod. Rep., 5, 387–415 (1988).

    PubMed  CAS  Google Scholar 

  • Heftmann, E., Steroids, in Phytochemistry Vol. 2 (L. P. Miller, ed.), 171–226, Van No.trand Reinhold, New York, 1973.

    Google Scholar 

  • Heftman, E., Functions of steroids in plants, Phytochemistry, 14, 891–901 (1975a).

    Google Scholar 

  • Heftman, E., Steroid hormones in plants, Lloydia, 38, 195–209 (1975b).

    Google Scholar 

  • Heftman, E., Metabolism of cholesterol in plants, in Isopentenoids in Plants (W. D. Nes, G. Fuller, and L. Tsai, eds.), 487–518, Marcel Dekker, Inc., New York, 1984.

    Google Scholar 

  • Heftman, E., H. H. Saver, and R. D. Bennett, Ecdysterone biosynthesis in Podocarpus elata, Phytochemistry, 7, 2027–2030 (1968).

    Google Scholar 

  • Hegnauer, R., Euphorbiaceae, in Chemotaxonomie der Pflanzen, Vol. 8, 440–474, Birkhäuser Verlag, Basel, 1989.

    Google Scholar 

  • Herbert, R. B., The Biosynthesis of Secondary Metabolites, Chapman & Hall, London, 1981.

    Google Scholar 

  • Herout, V., Some relations between plants, insects and their isoprenoids, in Progress in Phytochemistry Vol. 2 (L. Reinhold and Y. Liwschitz, eds.), 143–202, Interscience, London, 1970.

    Google Scholar 

  • Hikino, H. and Y. Hikino, Arthropod moulting hormones, Fortschr. Chem. Org. Naturst., 28, 256–312 (1970).

    PubMed  CAS  Google Scholar 

  • Hikino, H. and T. Takemoto, Ecdysones of plant origin, in Invertebrate Endrinocrinology and Hormonal Heterophylly (W. J. Burdette, ed.), 185–203, Springer-Verlag New York, 1974.

    Google Scholar 

  • Ikekawa, N., Sterol metabolism in insects and biosynthesis of ecdysone in the silkworm, Experientia, 39, 466–472 (1983).

    CAS  Google Scholar 

  • Jaenicke, L., VI. Development: Signals in the development of cryptogams, Prog. Bot., 52, 138–189 (1991).

    Google Scholar 

  • Jaenicke, L. and F. Marner, The irones and their precursors, Fortschr. Chem. Org. Naturst., 50, 1–25 (1986).

    CAS  Google Scholar 

  • Kaplanis, J.N., M. J. Thompson, W. E. Robbins, and B. M. Bryce, Insect hormones: Alpha ecdysone and 20-hydroxyecdysone in bracken fern, Science, 157, 1436–1437 (1967).

    PubMed  CAS  Google Scholar 

  • Karlson, P., Biochemical studies on insect hormones, Vitam. Horm., 14, 227–266 (1956a).

    PubMed  CAS  Google Scholar 

  • Karlson, P., Chemische Untersuchungen über die Metamorphosehormone der Insekten, Ann. Sci. Nat. Zool. Biol. Anim., 18, 125–138 (1956b).

    CAS  Google Scholar 

  • Kircher, H. W., Chemical composition of cacti and its relationship to Sonoran desert Drosophila, in Ecological Genetics and Evolution (J. S. F. Barker, and W. T. Starmer, ed.), 143–158, Academic Press, Sydney, 1982.

    Google Scholar 

  • Kircher, W. C, Sterols in the leaves of Cheirodendron gaudichaudii tree and their relation to Hawaiian Drospohila ecology, J. Insect Physiol., 15, 1167–1173 (1969).

    CAS  Google Scholar 

  • Knight, S. A., Carbon-13 NMR spectra of some tetra-and pentacyclic triterpenoids, Org. Magn. Res., 6, 603–611 (1974).

    CAS  Google Scholar 

  • Knights, B. A., Sterol metabolism in plants, Chem. Br., 9, 106–111 (1973).

    CAS  Google Scholar 

  • Kupchan, S. M., H. Meshulam, and A. T. Sneden, New cucurbitacins from Phormium tenax and Marah oreganus, Phytochemistry, 17, 767–769 (1978).

    CAS  Google Scholar 

  • Lavie, D. and E. Glotter, The cucurbitanes, a group of tetracyclic triterpenes, Fortschr. Chem. Org. Naturst., 29, 307–362 (1971).

    PubMed  CAS  Google Scholar 

  • Lynn, D., The involvement of allelochemicals in the host selection of parasitic angiosperms, in The Chemistry of Allelopathy (A. C. Thompson, ed.), ACS Symposium Series 268, 55–81, American Chemical Society, Washington, DC, 1985.

    Google Scholar 

  • Mabry, T. J. and J. E. Gill, Sesquiterpene lactones and other terpenoids, in Herbivores (G. A. Rosenthal and D. H. Janzen, eds.), 502–537, Academic Press, New York, 1979.

    Google Scholar 

  • Mandava, N. B., Natural products in plant growth regulation, in Plant Growth Substances (N. B. Mandava, ed.), ACS Symposium Series 111, 135–213, American Chemical Society, Washington, DC, 1979.

    Google Scholar 

  • Mandava, N. B., Plant growth-promoting brassinosteroids, Annu. Rev. Plant Phys. Plant Mol. Biol., 39, 23–52 (1988).

    CAS  Google Scholar 

  • Mann, J., Secondary Metabolism, Oxford University Press, Oxford, 1978; 2nd edition, 1987.

    Google Scholar 

  • Mascarenhas, J. P., Sexual chemotaxis and chemotropism in plants, in Taxis and Behaviour (G. L. Hazelbauer, ed.), 169–203, Chapman & Hall, London, 1978.

    Google Scholar 

  • Mata, R., M. Del Rayo C, E. Cervera, R. Bye, and E. Linares, Secondary metabolites from Hintonia latiflora, Phytochemistry, 29, 2037–2040 (1990).

    CAS  Google Scholar 

  • Metcalf, R. L., Plant kairomones and insect pest control, Ill. Nat. Hist. Surv. Bull. 33, 175–198 (1985).

    Google Scholar 

  • Metcalf, R. L., Revolutionary adaptations of rootworm beetles (Coleoptera: Chrysomelidae) to cucurbitacins, J. Chem. Ecol., 12, 1109–1124(1986).

    CAS  Google Scholar 

  • Metcalf, R. L. and R. L. Lampman, The chemical ecology of Diabroticites and Cucurbitaceae, Experientia, 45, 240–247 (1989).

    CAS  Google Scholar 

  • Meudt, W. J., Chemical and biological aspects of brassinolide, in Ecology and Metabolism of Plant Lipids (G. Fuller and W. D. Nes, eds.), ACS Symposium Series 325, 53–75, American Chemical Society, Washington, DC, 1987.

    Google Scholar 

  • Miller, R. W., J. Clardy, J. Kozlowski, K. L. Mikolajczak, R. D. Plattner, R. G. Powell, C. R. Smith, D. Weisleder, and Z. Qi-Tai, Phytoecdysteroids of Diploclisia glaucescens seed, Planta Medica, 51, 40–42 (1985).

    PubMed  CAS  Google Scholar 

  • Morgan, E. D. and N. B. Mandava, Handbook of Natural Pesticides: Insect Growth Regulators, Part. A., CRC Press, Boca Raton, FL, 1987.

    Google Scholar 

  • Nes, W. D., The biochemistry of plant sterols, Adv. Lipid Res., 15, 232–324 (1977).

    Google Scholar 

  • Nes, W. D. and G. W. Patterson, Effects of tetracyclic and pentacyclic triterpenoids on growth of Phytophthora cactorum, J. Nat. Prod., 44, 215–220 (1981).

    CAS  Google Scholar 

  • O’day, D. H. and P. A. Horgen, Sexual interactions, in Eucaryotic Microbes, Academic Press, New York, 1981.

    Google Scholar 

  • Ogunkoya, L., Application of mass spectrometry in structural problems in triterpenes, Phytochemistry, 20, 121–126 (1981).

    CAS  Google Scholar 

  • Paris, R. and A. Tessier, Chimie Végétal. Présence de substances du groupe des cucurbitacines chez diverses Euphorbiacées toxiques africaines, notamment chez Maprounea mebranacea Pax et K. Hofm., C. R. Acad. Sci. Paris, 274, 321–323 (1972).

    CAS  Google Scholar 

  • Patterson, G. W., Chemical and physical methods in the analysis of plant sterols, in Isopentenoids in Plants (W. D. Nes, G. Fuller, and L. Tsai, eds.), 307–312, Marcel Dekker, Inc., New York, 1984.

    Google Scholar 

  • Peterson, S. C, Chemical trail marking and following by caterpillars of Malacosoma neustria, J. Chem. Ecol., 14, 815–824 (1988).

    CAS  Google Scholar 

  • PopjáK, G., H. Ngan, and W. Agnew, Stereochemistry of the biosynthesis of presqualene alcohol, Bioorg. Chem., 4, 279–289 (1975).

    Google Scholar 

  • Poulter, C. D., Biosynthesis of non-head-to-tail terpenes. Formation of l′-l and l′-3 linkages, Acc. Chem. Res. 23, 70–77 (1990).

    CAS  Google Scholar 

  • Poulter, C. D. and H. C. Rilling, Conversion of farnesyl pyrophosphate to squalene, in Biosynthesis of Isoprenoid Compounds, Vol. 1 (J. W. Porter and S. L. Spurgeon, eds.), 413–441, Wiley, New York, 1981.

    Google Scholar 

  • Poulter, C. D., E. A. Mash, J. C. Argyle, O. J. Muscio, and H. C. Rilling, Farnesyl pyrophosphate synthetase. Mechanistic studies of the l′-4 coupling reaction in the terpene biosynthetic pathway, J. Am. Chem. Soc., 101, 6761–6763 (1979).

    CAS  Google Scholar 

  • Reddy, K. S., A. J. Amonkar, T. G. Mccloud, C. Chang, and J. M. Cassady, Spinosides A and B. Two cytotoxic cucurbitacin glycosides from Desfontainia spinosa, Phytochemistry, 27, 3781–3785 (1988).

    CAS  Google Scholar 

  • Rees, H. H., Ecdysteroids, in Biosynthesis of Isoprenoid Compounds, Vol. 2 (J. W. Porter and S. L. Spurgeon, eds.), 463–505, Wiley, New York, 1983.

    Google Scholar 

  • Reguero, M. T., R. Mata, R. Bye, E. Linares, and G. Delgado, Chemical studies on Mexican plants used in traditional medicine. II. Cucurbitacins from Hintonia latiflora, J. Nat. Prod., 50, 315–316 (1987).

    PubMed  CAS  Google Scholar 

  • Robbins, W. E., J. N. Kaplanis, M. J. Thompson, T. J. Shortino, and S. C. Joyner, Ecdysones and synthetic analogs: Molting hormone activity and inhibitive effects on insect growth, metamorphosis, and reproduction, Steroids, 16, 105–125 (1970).

    PubMed  CAS  Google Scholar 

  • Sasiak, K. and H. C. Rilling, Purification to homogeneity and some properties of squalene synthase, Arch. Biochem. Biophys., 260, 622–627 (1988).

    PubMed  CAS  Google Scholar 

  • Schildknecht, H., Die Wehrchemie von Land-und Wasserkäfern, Angew. Chem., 82, 17–25 (1970).

    Google Scholar 

  • Schildknecht, H., Evolutionary peaks in the defensive chemistry of insects, Endeavour, 30, 135–141 (1971).

    Google Scholar 

  • Seigler, D. S., The role of lipids in plant resistance to insects, in Plant Resistance to Insects (P. A. Hedin, ed.), ACS Symposium Series 208, 303–327, American Chemical Society, Washington, DC, 1983.

    Google Scholar 

  • Spencer, K. C, Specificity of action of allelochemicals: Diversification of glycosides, in Allelochemicals: Role in Agriculture and Forestry, ACS Symposium Series 330, 275–288, American Chemical Society, Washington, DC, 1987.

    Google Scholar 

  • Stuppner, H., E. P. Müller, and H. Wagner, Cucurbitacins from Picrorhiza kurrooa, Phytochemistry, 30, 305–310 (1991).

    CAS  Google Scholar 

  • SVOBODA, J. A. and M. J. THOMPSON, Variability in steroid metabolism among phytophagous insects, in Ecology and Metabolism of Plant Lipids (G. Fuller and W. D. Nes, eds.), ACS Symposium Series 325, 176–186, American Chemical Society, Washington, DC, 1987.

    Google Scholar 

  • TALLAMY, D. W., Squash beetle feeding behavior: an adaptation against induced cucurbit defenses, Ecology, 66, 1574–1579 (1985).

    Google Scholar 

  • Van Tamelen, E. E., J. Willet, M. Schwartz, and R. Nadeau, Nonenzymic laboratory cyclization of squalene 2,3-oxide, J. Am. Chem. Soc., 88, 5937–5938 (1966).

    PubMed  Google Scholar 

  • Van Tamelen, E. E., Bioorganic chemistry: Sterols and cyclic terpene terminal epoxides, Acc. Chem. Res., 1, 111–120 (1968).

    Google Scholar 

  • Wagner, H., Non-steroid, cardioactive plant constituents, in Economic and Medicinal Plant Research, Vol. 2 (H. Wagner, H. Hikino, and N. R. Farnsworth, eds.), 17–38, Academic Press, London, 1988.

    Google Scholar 

  • Wehrli, F. W. and T. Nishida, The use of carbon-13 nuclear magnetic resonance spectroscopy in natural products chemistry, Fortschr. Chem. Org. Naturst., 36, 1–229 (1979).

    CAS  Google Scholar 

  • Weidenhamer, J. D., F. A. Macias, N. H. Fischer, and G. B. Williamson, Just how insoluble are monoterpenes?, J. Chem. Ecol., 19, 1799–1807 (1993).

    CAS  Google Scholar 

  • Williams, D. H., M. J. Stone, P. R. Hauck, and S. K. Rahman, Why are secondary metabolites (natural products) biosynthesized?, J. Nat. Prod., 52, 1189–1208 (1989).

    PubMed  CAS  Google Scholar 

  • Zhang, D., S. M. Jennings, G. W. Robinson, and C. D. Poulter, Yeast squalene synthase: Expression, purification, and characterization of soluble recombinant enzyme, Arch. Biochem. Biophys., 304, 1133-143(1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seigler, D.S. (1998). Triterpenes and Steroids. In: Plant Secondary Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4913-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4913-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7228-8

  • Online ISBN: 978-1-4615-4913-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics