Skip to main content

The Origin of the Mineral Skeleton in Chordates

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 31))

Abstract

Most of the evolution of the vertebrate mineralized dermal skeleton, which has resulted in its present complexity, is traceable within the crossopterygian—tetrapod lineage. In acanthodianlike ancestors of these higher vertebrates the dermal skeleton was restricted to scales, locally coalescing into dermal plates or modified into oral teeth. The basic unit of such primitive vertebrate skeleton is the odontode, a denticle forming at the tip of an ectomesenchymal dental papilla under its ectodermal epithelium (recently reviewed by Smith and Hall, 1993; Smith, 1995). In most fishes and extinct armored agnathans the external layer of mineralized dermal tissue is enameloid, developing as a result of mineralization of a matrix produced by both ectodermal and ectomesenchymal cells of the dental papilla, or histogenetically similar complex tissue. Below this layer, purely ectomesenchymal in origin derivatives of dentine develop. However, in the most primitive actinopterygian fishes, ganoine, an enamel homolog (Sire et al., 1987) develops, instead of enameloid. Odontodes composed of acellular bone (aspidin) and capped with enamel characterize the Ordovician agnathan Eriptychius (Smith and Hall,1990; M. P. Smith et al., 1995; M. M. Smith et al.,1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge, R. J., 1982, A fused cluster of coniform elements from the late Ordovician of Washington Land, western North Greenland, Palaeontology 25:425–430.

    Google Scholar 

  • Aldridge, R. J., Briggs, D. E. G., Clarkson, E. N. K., and Smith, M. P., 1986, The affinities of conodonts—New evidence from the Carboniferous of Edinburgh, Scotland, Lethaia 19:279–291.

    Article  Google Scholar 

  • Aldridge, R. J., Briggs, D. E. G., Smith, M. E, Clarkson, E. N. K., and Clark, N. D. L., 1993, The anatomy of conodonts, Philosophical Transactions of the Royal Society London B 340:405–421.

    Article  Google Scholar 

  • Aldridge, R. J., Purnell, M. A., Gabbott, S. E., and Theron, J. N., 1995, The apparatus architecture and function of Promissum pulchrum Kovacs-Endrödy (Conodonta, Upper Ordovician) and the prioniodontid plan, Philosophical Transactions of the Royal Society London B 347:275–291.

    Article  Google Scholar 

  • Aldridge, R. J., Smith, M. E, Norby, R. D., and Briggs, D. E. G., 1987, The architecture and function of Carboniferous polygnathacean conodont apparatuses, in: Palaeobiology of Conodonts, (R. J. Aldridge, Ed.) pp. 77–90, British Micropalaeontological Society Series.

    Google Scholar 

  • Aldridge, R. J., and Theron, J. N., 1993, Conodonts with preserved soft tissue from a new Ordovician Konservat Lagerstätte, Journal of Micropalaeontology 12:113–117.

    Article  Google Scholar 

  • Andres, D., 1988, Strukturen, Apparate und Phylogenie primitiver Conodonten, Palaeonto-graphica A 200:105–152.

    Google Scholar 

  • Arsenault, M., and Janvier, E., 1991, The anaspid-like craniates of the Escuminac Formation (Upper Devonian) from Miguasha (Quebec, Canada), with remarks on anaspidpetromyzontid relationships, in: Early Vertebrates and Related Problems of Evolutionary Biology (M. M. Chang and G. R. Zhang, Eds.), pp. 19–40, Science Press, Beijing.

    Google Scholar 

  • Bard, J. 1990, Morphogenesis; The Cellular and Evolutionary Process of Developmental Anatomy, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Bardack, D., and Richardson, E. S., Jr., 1977, New agnathous fishes from the Pennsylvanian of Illinois, Fieldiana Geology 33:489–510.

    Google Scholar 

  • Beall, B. S., 1991, The Tully monster and a new approach to analyzing problematica, in: The Early Evolution of Metazoa and the Significance of Problematic Taxa (A. M. Simonetta and S. Conway Morris Eds.), pp. 271–285, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bengtson, S., 1976, The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function, Lethaia 9:185–206.

    Article  Google Scholar 

  • Bengtson, S., 1983, The early history of the Conodonta, Fossils and Strata 15:5–19.

    Google Scholar 

  • Benito, J., and Pardos, F., 1997, Hemichordata, in: Microscopic Anatomy of Invertebrates, Vol. 15, Hemichordata, Chaetognatha, and the Invertebrate Chordates (E. W. Harrison and E. E. Ruppert, Eds.), pp. 15–101. Wiley-Liss, New York.

    Google Scholar 

  • Bone, Q., and Duvert, M., 1991, Locomotion and buoyancy, in: The Biology of Chaetognaths (Q. Bone, H. Kapp and A. C. Pierrot-Bults, Eds.), pp. 32–44. Oxford University Press, Oxford.

    Google Scholar 

  • Bone, Q., and Goto, T. 1991, The nervous system, in: The Biology of Chaetognaths (Q. Bone, H. Kapp and A. C. Pierrot-Bults, Eds.), pp. 18–31. Oxford University Press, Oxford.

    Google Scholar 

  • Bone, Q., Ryan, K. P., and Pulsford, A. L. 1983, The structure and composition of the teeth and grasping spines of chaetognaths, Journal of the Marine Biological Association of the United Kingdom 63:929–939.

    Article  Google Scholar 

  • Bousfield, E. L., 1995, A contribution to the natural classification of lower and middle Cam-brian arthropods: Food-gathering and feeding mechanisms, Amphipacifica 2:3–34.

    Google Scholar 

  • Boyde, A., 1978, Development of the structure of the enamel of the incisor teeth in the three classical subordinal groups of the Rodentia, in: Development, Function and Evolution of Teeth (P. M. Butler and K. A. Joysey, Eds.), pp. 43–58, Academic Press. London.

    Google Scholar 

  • Brigger, D., and Muckle, T. J., 1975, Compraison of Sirius Red and Congo Red as stains for amyloid in animal tissues, The Journal of Histochemistry and Cytochemistry 23:84–88.

    Article  PubMed  CAS  Google Scholar 

  • Briggs, D. E. G., and Clarkson, E. N. K., 1987, An enigmatic chordate from the Lower Car-boniferous “shrimp-bed” of the Edinburgh district, Scotland, Lethaia 20:107–115.

    Article  Google Scholar 

  • Briggs, D. E. G., Clarkson, E. N. K., and Aldridge, R. J., 1983, The conodont animal, Lethaia 16:1–14.

    Article  Google Scholar 

  • Burnett, R., 1988, Polygonal ornament in the conodont Siphonodella: An internal record, Lethaia 21.411–415.

    Article  Google Scholar 

  • Burnett, R. D., and Hall, J. C., 1992, Significance of ultrastructural features in etched conodonts, Journal of Paleontology 66:266–276.

    Google Scholar 

  • Carls, P., 1977, Could conodonts be lost and replaced? Numerical relations among disjunct conodont elements of certain Polygnathaceae (late Silurian—Lower Devonian, Europe), Neues Jahrbuch für Geologie und Paläontology, Abhandlungen 155:18–64.

    Google Scholar 

  • Chen J.-y. and Gong W.-I.,1986, Conodonts, in: Aspects of Cambrian-Ordovician Boundary in Dayangcha, China (Chen Jun-yuan. Ed.), pp. 93–223. China Prospect Publishing House, Bejing.

    Google Scholar 

  • Chen, J. Y., Dzik, J., Edgecombe, G. D., Ramsköld, L., and Zhou, G.-Q.,1995, A possible Early Cambrian chordate. Nature 377:720–722.

    Article  CAS  Google Scholar 

  • Christofferson, M. L., and Araújo-de-Almeida, E.,.1994, A phylogenetic framework of the Enterocoela (Metameria: Coelomata), Revista Nordestina de Biologia 9:173–208.

    Google Scholar 

  • Conway Morris, S., 1976a, A new Cambrian lophophorate from the Burgess Shale of British Columbia, Palaeontology 19:199–222.

    Google Scholar 

  • Conway Morris, S., 1976b, Nectocaris pteryx, a new organism from the Middle Cambrian Burgess Shale of British Columbia, Neues Jahrbuch für Geologie und Paläontology, Monatshefte 1976:705–713.

    Google Scholar 

  • Conway Morris, S., 1977, A redescription of the Middle Cambrian worm Amiskwia sagittiformis Walcott from the Burgess Shale of British Columbia, Paläontologische Zeitschrift 51:271–287.

    Google Scholar 

  • Conway Morris, S., 1990, Typhloesus wellsi (Melton & Scott 1973), a bizarre metazoan from the Carboniferous of Montana, Philosophical Transactions of the Royal Society of London B 327:595–624.

    Article  Google Scholar 

  • Conway Morris, S., and Harper, E., 1988, Genome size in conodonts (Chordata): Inferred variations during 270 million years, Science 241:1230–1232.

    Article  Google Scholar 

  • Conway Morris, S., and Whittington, H. B., 1979, The animals of the Burgess Shale. Scientific American 241:122–133.

    Article  Google Scholar 

  • Crandall, F., 1993, Major characters and enoplan systematics, Hydrobiologia 266:115–140.

    Article  Google Scholar 

  • Dawson, J. A., 1963, The oral cavity, the “jaws” and the horny teeth of Myxine glutinosa, in: The Biology of Myxine (A. Brodal and R. Fänge, Eds.), pp. 231–255, Universitetsforlaget, Oslo.

    Google Scholar 

  • Denham, R. L., 1944, Conodonts, Journal of Paleontology 18:216–218.

    Google Scholar 

  • Dilly, P. N., 1975, The pterobranch Rhabdopleura compacta: Its nervous system and phylogenetic position, Symposia of the Zoological Society of London 36:1–16.

    Google Scholar 

  • Donoghue, P. C. J., 1998, Growth and patterining in the conodont skeleton, Philosophical Transactions of the Royal Society London B. 353:633–666.

    Article  Google Scholar 

  • Dzik, J., 1976, Remarks on the evolution of Ordovician conodonts, Acta Palaeontologica Polonica 21:395–455.

    Google Scholar 

  • Dzik, J., 1986, Chordate affinities of the conodonts, in: Problematic tossil taxa (A. Holtman and M. H. Nitecki, Eds.), pp. 240–254, Oxford University Press, New York.

    Google Scholar 

  • Dzik, J., 1991a, Evolution of oral apparatuses in conodont chordates, Acta Palaeontologica Polonica 36:265–323.

    Google Scholar 

  • Dzik, J., 1991b, Features of the fossil record of evolution, Acta Palaeontologica Polonica 36:2, 91–113.

    Google Scholar 

  • Dzik, J., 1993, Early metazoan evolution and its fossil record, Evolutionary Biology 27:339–386.

    Article  Google Scholar 

  • Dzik, L, 1994, Conodonts of the Mójcza Limestone, in: J. Dzik, E. Olempska and A. Pisera. Ordovician carbonate platform of the Holy Cross Mountains, Palaeontologia Polonica 53:43–128.

    Google Scholar 

  • Dzik, J., 1995, Yunnanozoon and the ancestry of chordates, Acta Palaeontologica Polonica 40:341–360.

    Google Scholar 

  • Dzik, J., 1996, Organization, function, morphogenesis, and origin of oral apparatuses in the conodont chordates, Sixth European Conodont Symposium (ECOS VI),Abstracts, 16.

    Google Scholar 

  • Dzik, J., 1997, Emergence and succession of Carboniferous conodont and ammonoid communities in the Polish part of the Variscan sea, Acta Palaeontologica Polonica 42:57–170.

    Google Scholar 

  • Dzik, J., and Drygant, D., 1986, The apparatus of panderodontid conodonts, Lethaia 19:133–141.

    Article  Google Scholar 

  • Dzik, J., and Trammer, J., 1980, Gradual evolution of conodontophorids in the Polish Triassic, Acta Palaeontologica Polonica 25:55–89.

    Google Scholar 

  • Fedonkin, M. A., 1987, Non-skeletal fauna of the Vendian and its place in the evolution of Metazoa, Trudy Paleontologicéskogo Instituta AN SSSR 226:1–178 [In Russian].

    Google Scholar 

  • Fels, L. M., Zanz-Altamira, P. M., Decker, B., Eiger, B., and Stolte, H., 1993, Filtration characteristics of the single isolated perfused glomerulus of Myxine glutinosa, Renal Physiology and Biochemistry 16:276–284.

    PubMed  CAS  Google Scholar 

  • Flood, P. R., 1975, Fine structure of the notochord of Amphioxus, Symposia of the Zoological Society of London 36:81–104.

    Google Scholar 

  • Forey, E., and Janvier, R., 1993, Agnathans and the origin of jawed vertebrates, Nature 361:129–134.

    Article  Google Scholar 

  • Foster, M. W., 1979, A reappraisal of Tullimonstrum gregarium, in: Mazon Creek Fossils (M. H. Nitecki, Ed.), pp. 269–301. Academic Press, New York.

    Google Scholar 

  • Gabbott, S. E., Aldridge, R. J., and Theron, J. N., 1995, A giant conodont with preserved muscle tissue from the Upper Ordovician of South Africa, Nature 374:800–802.

    Article  CAS  Google Scholar 

  • Garcia-Fernàndez, J., and Holland, P. W. H., 1994, Archetypal organization of the amphioxus Hox gene cluster, Nature 370:563–566.

    Article  PubMed  Google Scholar 

  • Gee, H., 1996, Before the Backbone: Views on the Origin of Vertebrates,Chapman & Hall, London.

    Google Scholar 

  • Gehling, J. G., 1991, The case for Ediacaran fossil roots to the metazoan tree, Memoirs of the Geological Society of India 20:181–224.

    Google Scholar 

  • Gibson, R., 1988, Evolutionary relationships between mono-and polystiliferous hoplonemerteans: Nipponnemertes (Cratenemertidae), a “missing link” genus? Hydrobiologia 156:61–74.

    Article  Google Scholar 

  • Glaessner, M. E, and Wade, M., 1966, The late Precambrian fossils from Ediacara, South Australia, Palaeontology 9:599–628.

    Google Scholar 

  • Gross, W., 1957, Über die Basis der Conodonten, Paläontologische Zeitschrift 31:78–91.

    Google Scholar 

  • Halanych, K. M., 1995, The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data, Molecular Phylogenetics and Evolution 4:72–76.

    Article  PubMed  CAS  Google Scholar 

  • Hardisty, M. W., and Rovainen, C. M., 1982, Morphological and functional aspects of the mus-cular system, in: The Biology of Lampreys,Vol. 4A (M. W. Hardisty and I. C. Potter, Eds.),pp. 137–231, Academic Press, New York.

    Google Scholar 

  • Hass, W H., 1941, Morphology of conodonts, Journal of Paleontology 15:71–81.

    Google Scholar 

  • Holland, R. W. H., and Garcia-Fernandez, J., 1996, HOX genes and chordate evolution, Developmental Biology 173:382–395.

    Article  PubMed  CAS  Google Scholar 

  • Holland, R W. H., Garcia-Fernandez, J., Williams, N. A., and Sidow, A., 1994, Gene duplications and the origins of vertebrate development, Development, Suppl.:125–133.

    Google Scholar 

  • Hou, X., Ramsköld, L., and Bergström, J., 1991, Composition and preservation of the Chengjiang fauna—a Lower Cambrian soft-bodied biota. Zoologica Scripta 20:395–411.

    Article  Google Scholar 

  • Hu, C. C., Sakakura, Y., Sasano, Y., Shum, L., Bringas, P. Jr., Werb, Z., and Slavkin, H. C.,1992, Endogenous epidermal growth factor regulates the timing and pattern of embryonic mouse molar tooth morphogenesis, International Journal of Developmental Biology 36:505–516.

    PubMed  CAS  Google Scholar 

  • Jefferies, R. P. S., 1986, The Ancestry of the Vertebrates, 376 pp., British Museum (Natural History).

    Google Scholar 

  • Jenkins, R. J. F., 1992, Functional and ecological aspects of Ediacaran assemblages, in: Origin and Early Evolution of the Metazoa (J. H. Lipps and P. W. Signor, Eds.), pp. 131–176, Plenum Press, New York.

    Google Scholar 

  • Jensen, D. D.. 1960. Hoolonemertines, mvxinoids and deuterostome origins, Nature 188: 649–650.

    Article  Google Scholar 

  • Jensen, D. D., 1988, Hubrecht, Macfarlane, Jensen and Willmer: On the nature and testability of four versions of the nemertean theory of vertebrate origins, Hydrobiologia 156:99–104.

    Article  Google Scholar 

  • Jeppsson, L., 1979, Conodont element function, Lethaia, 12:153–171.

    Article  Google Scholar 

  • Jernvall, J., Kettunen, P., Karavanova, I., Martin, L. B., and Thesleff, I., 1994, Evidence for the role of enamel knot as a control center in mammalian tooth cusp formation: Non-dividing cells express growth stimulation Fgf-4 gene, International Journal of Developmental Biology 38:463–469.

    PubMed  CAS  Google Scholar 

  • Kapp, H., 1991, Morphology and anatomy, in: The Biology of Chaetognaths (Q. Bone, H. Kapp and A. C. Pierrot-Bults, Eds.), pp. 5–17, Oxford University Press, Oxford.

    Google Scholar 

  • Kemp, A., and Nicoll, R. S., 1995, Protochordate affinities of conodonts, Courier Forschungsinstitut Senckenberg 182:235–245.

    Google Scholar 

  • Klapper, G., and Bergström, S. M., 1984, The enigmatic Middle Ordovician fossil Archaeognathus and its relation to conodonts and vertebrates, Journal of Paleontology 58:949–976.

    Google Scholar 

  • Krejsa, R. J., Bringas, P., and Slavkin, H. C., 1990a, A neontological interpretation of conodont elements based on agnathan cyclostome tooth structure, function, and development, Lethaia 23:359–378.

    Article  Google Scholar 

  • Krejsa, R. J., Bringas, P., and Slavkin, H. C., 1990b, The cyclostome model: An interpretation of conodont element structure and function based on cyclostome tooth morphology, function, and life history, Courier Forschungsinstitut Senckenberg 118:473–492.

    Google Scholar 

  • Lacalli, T. C., 1996, Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: Evidence from 3D reconstructions, Philosophical Transactions of the Royal Society London B 351:243–263.

    Article  Google Scholar 

  • Lindström, M., and Ziegler, W., 1971, Feinstrukturelle Untersuchungen an Conodonten. 1. Die Überfamilie Panderodontacea, Geologica et Palaeontologica 5:9–33.

    Google Scholar 

  • Long, J. A., 1995, The Rise of Fishes. 500 million Years of Evolution, 223 pp., The John Hopkins University Press, Baltimore.

    Google Scholar 

  • MacKenzie, A., Ferguson, M. W., and Sharpe, P. T., 1992, Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape, Development 115:403–420.

    PubMed  CAS  Google Scholar 

  • Mallatt, J., 1996, Ventilation and the origin of jawed vertebrates: A new mouth, Zoological Journal of the Linnean Society 117:329–404.

    Article  Google Scholar 

  • Männik, P., and Aldridge, R. J., 1989, Evolution, taxonomy, and relationships of the Silurian conodont Pterospathodus,Palaeontology 32:893–906.

    Google Scholar 

  • Marotta, M., and Martino, G., 1985, Sensitive spectrophotometric method for the quantitative estimation of collagen. Analytical Biochemistry 150:86–90.

    Article  PubMed  CAS  Google Scholar 

  • Marsal, D., and Lindström, M., 1972, A contribution to the taxonomy of conodonts: The statistical reconstruction of fragmented populations, Geoloeica et Palaeontologica SB 1:43–46.

    Google Scholar 

  • Masuda, T., Nishikawa, K., and Takagi, T., 1989, Ultrastructure of secretory ameloblasts in the house musk shrew, Suncus murinus, Insectivora, Acta Anatomica, Basel 134:72–78.

    Article  CAS  Google Scholar 

  • Matsuo, S., Ichikawa, H., Wakisaka, S., and Akai, M., 1992, Changes of cytochemical properties in the Golgi apparatus during in vivo differentiation of the ameloblast in developing rat molar tooth germs, Anatomical Records 234:469–478.

    Article  CAS  Google Scholar 

  • Meunier, F. J., 1980, Recherches histologiques sur le squelette dermique des Polypteridae, Archives de Zoologie Expérimentale et Générale 121:279–295.

    Google Scholar 

  • Müller, K. J., and Nogami, Y., 1971, Über den Feinbau der Conodonten, Memoirs of the Faculty of Sciences, Kyoto University,Series of Geology and Mineralogy 38:1–87.

    Google Scholar 

  • Nicoll, R. S., 1995, Conodont element morphology, apparatus reconstructions and element function: A new interpretation of conodont biology with taxonomic implications, Courier Forschungsinstitut Senckenberg 182:247–262.

    Google Scholar 

  • Nielsen, C., Scharff, N., and Eibye-Jacobsen, D., 1996, Cladistic analysis of the animal kingdom, Biological Journal of the Linnean Society 57:385–410.

    Article  Google Scholar 

  • Partanen, A. M., and Thesleff, I., 1989, Growth factors and tooth development, International Journal of Developmental Biology 33:165–172.

    PubMed  CAS  Google Scholar 

  • Peters, A., 1963, The peripheral nervous system, in: The Biology of Myxine (A. Brodal and R. Fänge, Eds,), pp. 92–123, Universitetsforlaget, Oslo.

    Google Scholar 

  • Pierce, R. W, and Langenheim, R. L., 1970, Surface pattern on selected Mississippian conodonts, Geological Society of America Bulletin 81:3225–3236.

    Article  Google Scholar 

  • Priddle, J., 1974, The function of conodonts, Geological Magazine 111:255–257.

    Article  Google Scholar 

  • Pridmore, P. A., Barwick, R. E., and Nicoll, R. S., 1996, Soft anatomy and the affinities of conodonts. Lethaia 29:325–328.

    Article  Google Scholar 

  • Prostak, K. S., Seifert, E, and Skobe, Z., 1993, Enameloid formation in two tetraodontiform fish species with high and low fluoride contents in enameloid, Archive of Oral Biology 38:1031–1044.

    Article  CAS  Google Scholar 

  • Purnell, M. A., 1993, The Kladognathus apparatus (Conodonta, Carboniferous): Homologies with ozarkodinids, and the prioniodinid Bauplan, Journal of Paleontology 67:875–882.

    Google Scholar 

  • Purnell, M. A., 1994, Skeletal ontogeny and feeding mechanisms in conodonts, Lethaia 27:129–138.

    Article  Google Scholar 

  • Purnell, M. A., 1995b, Microwear on conodont elements and macrophagy in the first vertebrates, Nature 374:798–800.

    Article  CAS  Google Scholar 

  • Purnell, M. A., Aldridge, R. J., Donoghue, P. C. J., and Gabbott, S. E., 1995, Conodonts and the first vertebrates, Endavour 19:20–27.

    Article  Google Scholar 

  • Purnell, M. A., and Donoghue, P. C. J., 1997, Architecture and functional morphology of the skeletal apparatus of ozarkodinid conodonts. Philosophical Transactions of the Royal Society London B. 352:1545–1564.

    Article  Google Scholar 

  • Ritchie, A., 1968, New evidence on Jamoytius kerwoodi White, an important ostracoderm from the Silurian of Lanarkshire, Scotland, Palaeontology 11:21–39.

    Google Scholar 

  • Runnegar, B., 1982, Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia,and the evolution of the burrowing habit, Alcheringa 6:223–239.

    Article  Google Scholar 

  • Ruppert, E. E., 1997, Cephalochordata (Acrania), in: Microscopic Anatomy of Invertebrates, Vol. 15, Hemichordata, Chaetognatha,and the Invertebrate Chordates (E W. Harrison and E. E. Ruppert, Eds.), pp. 349–504, Wiley-Liss, New York.

    Google Scholar 

  • Sansom, I. J., 1996, Pseudooneotodus: A histological study of an Ordovician to Devonian vertebrate lineage, Zoological Journal of the Linnean Society 118:47–57.

    Article  Google Scholar 

  • Sansom, I. J., Armstrong, H. A., and Smith, M. E, 1995, The apparatus architecture of Panderodus and its implications for coniform conodont classification, Palaeontology 37:781–799.

    Google Scholar 

  • Sansom, I. J., Smith, M. E, Armstrong, H. A., and Smith, M. M.,1992, Presence of the earliest vertebrate hard tissues in conodonts, Science 256:1308–1311.

    Article  PubMed  CAS  Google Scholar 

  • Sansom, I. J., Smith, M. P, and Smith, M. M.,1994, Dentine in conodonts, Nature 368:591.

    Article  Google Scholar 

  • Sansom, I. J., Smith, M. M., and Smith, M. P., 1996, Scales of thelodont and shark-like fishes from the Ordovician of Colorado, Nature 379:628–630.

    Article  CAS  Google Scholar 

  • Schmidt, H., and Müller, K. I.,1964, Weitere Funde von Conodonten-Uruppen aus dem oberen Karbon des Sauerlandes, Paläontologische Zeitschrift 38:105–135.

    Google Scholar 

  • Seilacher, A., 1989, Vendozoa: Organismic construction in the Proterozoic biosphere, Lethaia 22:229–239.

    Article  Google Scholar 

  • Shellis, R. E,1978, The role of the inner dental epithelium in the formation of the teeth in fish, in: Development, Function and Evolution of Teeth (P. M. Butler and K. A. Joysey, Eds.), pp. 31–42, Academic Press, London.

    Google Scholar 

  • Shu, D.-G., Conway Morris, S., and Zhang, X.-L.,1996, A Pikaia-like chordate from the Lower Cambrian of China, Nature 384:157–158.

    Article  CAS  Google Scholar 

  • Shu, D.-G., Zhang, X.-L., and Chen, L., 1996, Reinterpretation of Yunnanozoon as the earliest known hemichordate, Nature 380:428–430.

    Article  CAS  Google Scholar 

  • Simonetta, A. M., and Insom, E., 1993, New animals from the Burgess Shale (Middle Cambrian) and their possible significance for the understanding of the Bilateria, Bolletino Zoologico 60:97–107.

    Article  Google Scholar 

  • Sire, J.-Y., 1994, Light and TEM study on nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation, The Anatomical Record 240:189–207.

    Article  PubMed  CAS  Google Scholar 

  • Sire, J.-Y.,1995, Ganoine formation in the scales of primitive actinopterygian fishes, lepisosteids and polypterids, Connective Tissue Research 33:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Sire, J. Y., Géraudie, J., Meunier, E J., and Zylbelberg, L., 1987. On the origin of ganoine: Histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabricus (Osteichthyes, Brachyopterygii, Polypteridae), The American Journal of Anatomy 180:391–402.

    Article  PubMed  CAS  Google Scholar 

  • Slavkin, H. C., and Diekwisch, T., 1996, Evolution in tooth developmental biology: Of morphology and molecules, The Anatomical Record 245:131–150.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. M., 1995, Heterochrony in the evolution of enamel in vertebrates, in: Evolutionary Change and Heterochrony (K. J. McNamara, Ed.), pp. 125–150. John Wiley and Sons, London.

    Google Scholar 

  • Smith, M. M., and Hall, B. K., 1990, Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues, Biological Reviews 65:277–373.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. M., and Hall, B. K., 1993, A developmental model for evolution of the vertebrate exoskeleton and teeth. The role of cranial and trunk neural crest, Evolutionary Biology 27:387–448.

    Article  Google Scholar 

  • Smith, M. M., Sansom, I. J., and Smith, M. E, 1995, Diversity of the dermal skeleton in Ordovician to Silurian vertebrate taxa from North America: Histology, skeletogenesis and relationships, Geobios, M.S. 19:65–70.

    Article  Google Scholar 

  • Smith, M. M., Sansom, I. J., and Smith, M. E., 1996, “Teeth” before armour: The earliest vertebrate mineralized issues, Modern Geology 20:303–319.

    Google Scholar 

  • Smith, M. P., Sansom, I. J., and Repetski, J. E., 1996, Histology of the first fish, Nature 380:702–704.

    Article  CAS  Google Scholar 

  • Soler, C., and Carpenter, G., 1994, The epidermal growth factor (EGF) family, in: Guidebook to Cytokines and Their Receptors (N. A. Nicora, Ed.), pp. 194–196, Oxford University Press, Oxford.

    Google Scholar 

  • Stock, D. W., and Whitt, G. S., 1992, Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group, Science 257:787–789.

    Article  PubMed  CAS  Google Scholar 

  • Stricker, S. A., 1982, Stylet formation in nemerteans, Biological Bulletin 162:387–403.

    Article  Google Scholar 

  • Sweet, W. C., 1988, The Conodonts: Morphology, Taxonomy, Paleoecology and Evolutionary History of a Long-extinct Animal Phylum, 211 pp., Oxford University Press, New York.

    Google Scholar 

  • Szaniawski, H., 1971, New species of Upper Cambrian conodonts from Poland, Acta Palaeon-tologicà Polonica 16:401–413.

    Google Scholar 

  • Szaniawski, H., 1982, Chaetognath grasping spines recognized among Cambrian protocon-odonts, Journal of Paleontology 56:806–810.

    Google Scholar 

  • Szaniawski, H., and Bengtson, S., 1993, Origin of euconodont elements, Journal of Paleontol ogy 67:640–654.

    Google Scholar 

  • Thesleff, I., and Nieminen, P., 1996. Tooth morphogenesis and cell differentiation, Current Opinion in Cell Biology 8:844–850.

    Article  PubMed  CAS  Google Scholar 

  • Turbeville, J. M., and Ruppert, E. E., 1985, Comparative ultrastructure and the evolution of. nemertines, American Zoologist 25:127–134.

    Google Scholar 

  • Turbeville, J. M., Field, K. G., and Raff, R. A., 1992, Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: Molecular data as a test of morphological character homology, Molecular Biology and Evolution 8:669–686.

    Google Scholar 

  • Turbeville, J. M., Schulz, J. R., and Raff, R. A., 1994, Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology, Molecular Biology and Evolution 11:638–645.

    Google Scholar 

  • Urbanek, A., 1986, The enigma of graptolite ancestry: Lesson from a phylogenetic debate, in: Problematic Fossil Taxa (A. Hoffman and M. H. Nitecki, Eds.), pp. 184–226, Oxford University Press, New York.

    Google Scholar 

  • Vainikka, S., Mustonen, T., and Alitalo, K., 1994, Fibroblast Growth Factors (FGFs), in: Guidebook to Cytokines and Their Receptors (N. A. Nicora, Ed.), pp. 215–217, Oxford University Press, Oxford.

    Google Scholar 

  • von Bitter, P. H., and Norby, R. D., 1994, Fossil epithelial cell imprints as indicators of conodont biology, Lethaia 27:193–198.

    Article  Google Scholar 

  • Wada, H., and Satoh, N., 1994, Details of evolutionary history from invertebrates to vertebrates, as deduced from sequences of 18S rRNA, Proceedings of the National Academy of Sciences, USA. 91:1801–1804.

    Article  CAS  Google Scholar 

  • Wade, M., 1972, Dickinsonia: Polychaete worms from the late Precambrian Ediacara fauna, South Australia, Memoirs of the Queensland Museum 16:171–190.

    Google Scholar 

  • Whittington, H. B., 1985, The Burgess Shale, Yale University Press, New Haven.

    Google Scholar 

  • Wicht, H., and Northcutt, R. G., 1992, The forebrain of the Pacific hagfish: A cladistic reconstruction of the ancestral craniate forebrain, Brain, Behaviour and Evolution 40:25–64.

    Article  CAS  Google Scholar 

  • Williams, A., Cusack, M., and MacKay, S., 1994, Collagenous chitinophosphatic shell of the bra-chiopod Lingula, Philosophical Transactions of the Royal Society London B 346:223–266.

    Article  Google Scholar 

  • Williams, N. A., and Holland, P. W. H., 1996, Old head on young shoulders, Nature 383:490.

    Article  CAS  Google Scholar 

  • Willmer, E. N., 1974, Nemertines as possible ancestors of the vertebrates, Biological Reviews of the Cambridge Philosophical Society 49:321–364.

    Article  PubMed  CAS  Google Scholar 

  • Willmer, E. N., 1975, The possible contribution of nemertines to the problem of the phylogeny of the protochordates, Symposia of the Zoological Society of London 36:319–345.

    Google Scholar 

  • Willmer, P.,1990, Invertebrate Relationships: Patterns in Animal Evolution, 400 pp., Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Winnepenninckx, B., Backeljau, T., and De Wachter, R., 1995, Phylogeny of protostome worms derived from 18S rRNA sequences, Molecular Biology and Evolution 12:41–649.

    Google Scholar 

  • Wright, K. A., 1991, Nematoda, in: Microscopic Anatomy of Invertebrates,Volume 4, Aschelminthes (F. W. Harrison and E. E. Ruppert, Eds.), pp. 119–195, Wiley-Liss, New York.

    Google Scholar 

  • Yalden, D. W., 1985, Feeding mechanisms as evidence for cyclostome monophyly, Zoological Journal of the Linnean Society 84:291–300.

    Article  Google Scholar 

  • Zhang, S., Aldridge, R. J., and Donoghue, P. C. J., 1997, An Early Triassic conodont with periodic growth? Journal of Micropalaeontology 16:65–72.

    Article  CAS  Google Scholar 

  • Zhuravlev, A. V., 1994, Polygonal ornament in conodonts, Lethaia 26:287–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dzik, J. (2000). The Origin of the Mineral Skeleton in Chordates. In: Hecht, M.K., Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4185-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4185-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6877-9

  • Online ISBN: 978-1-4615-4185-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics