Skip to main content

Conditions for Global Optimality

  • Chapter
Handbook of Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 2))

Abstract

Given an optimization problem we are interested in getting characterizations of its global solutions, i.e., necessary and sufficient conditions for a feasible point to be a global minimum (or maximum) of the objective function. We review here recent theoretical results in that direction, emphasizing those which have led to algorithms for global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. BENOIST, J. and HIRIART-URRUTY, J.-B. (1992) “What is the subdifferential of the convex hull of a function ?” , Preprint Université Paul Sabatier, Toulouse.

    Google Scholar 

  2. BOMZE, I.M. and DANNINGER, G. “Using copositivity for global optimality criteria in concave quadratic programming problems”, to appear in Math. Programming.

    Google Scholar 

  3. BOMZE, I.M. and DANNINGER, G. “A global optimization algorithm for concave quadratic programming problems”, to appear in SIAM J. on Optimization.

    Google Scholar 

  4. BRENIER, Y. (1989) “Un algorithme rapide pour le calcul de transformées de Legendre - Fenchel discrètes”, Note aux C.R. Acad. Sc. Paris, T. 308, 587-589.

    MathSciNet  MATH  Google Scholar 

  5. CALVERT, B. and VAMANAMURTHY, M.K. (1980) “Local and global extrema for functions of several variables”, J. Austral. Math. Soc. (Series A) 29, 362-368.

    Article  MathSciNet  MATH  Google Scholar 

  6. CARRARESI, P., MALUCELLI, F. and PAPALLARDO, M. (1993), “Testing optimality for quadratic 0-1 unconstrained problems”, preprint Universita di Pisa.

    Google Scholar 

  7. CHABRILLAC, Y. and CROUZEIX, J.-P. (1984) “Definiteness and semidefiniteness of quadratic forms revisited”, Linear Algebra and its Applications 63, 283-292.

    Article  MathSciNet  MATH  Google Scholar 

  8. CHEW, S. H. and ZHENG, Q (1988) Integral Global Optimization, Lecture Notes in Economics and Mathematical Systems Vol. 298, Springer Verlag.

    Google Scholar 

  9. DANNINGER, G. (1992) “Role of copositivity in optimality criteria for nonconvex optimization problems”, J. of Optimization Theory and Applications 75, 535-558.

    Article  MathSciNet  MATH  Google Scholar 

  10. DEDIEU, J.-P. (1980) “Une condition nécessaire et suffisante d’optimalité en optimisation non convexe et en calcul des variations”, Séminaire d’Analyse Numérique, Université Paul Sabatier de Toulouse.

    Google Scholar 

  11. FALK, J. E. (1973) “Conditions for global optimality in nonlinear programming”, Operations Research 21, 337-340.

    Article  MathSciNet  MATH  Google Scholar 

  12. HESTENES, M. R. (1980) “Augmentability in optimization theory”, J. of Optimization Theory and Applications 32, 427-440.

    Article  MathSciNet  MATH  Google Scholar 

  13. HIRIART-URRUTY, J.-B. (1986) “When is a point satisfying V f(x) = 0 a global minimum of f ?”, Amer. Math. Monthly 93, 556-558.

    Article  MathSciNet  MATH  Google Scholar 

  14. HIRIART-URRUTY, J.-B. (1989) “From convex optimization to nonconvex optimization. Part I : Necessary and sufficient conditions for global optimality”, in Nonsmooth Optimization and Related Topics, Plenum Press, 219-239.

    Google Scholar 

  15. HIRIART-URRUTY, J.-B. and LEMARECHAL, C. (1990) “Testing necessary and sufficient conditions for global optimality in the problem of maximizing a convex quadratic function over a convex polyhedron”, Séminaire d’Analyse Numérique, Université Paul Sabatier de Toulouse.

    Google Scholar 

  16. HIRIART-URRUTY, J.-B. and LEMARECHAL, C. (1993) Convex Analysis and Minimization Algorithms, Grundlehren der mathematischen Wissenschaften Vol. 305 and 306, Springer Verlag.

    Google Scholar 

  17. MARCELLINI, P. (1984) “Quasiconvex quadratic forms in two dimensions”, Appl. Math. Optim. 11, 183-189.

    Article  MathSciNet  MATH  Google Scholar 

  18. MORE, J. and SORENSEN, D. C. (1983) “Computing a trust region step”, SIAM J. Sci. Stat. Comput. Vol. 4, N°3, 553-572.

    Article  MathSciNet  MATH  Google Scholar 

  19. NEUMAIER, A. (1992) “An optimality criterion for global quadratic optimization”, J. of Global Optimization 2, 201-208.

    Article  MathSciNet  MATH  Google Scholar 

  20. RINNOOY KAN, A. H. G. and TIMMER, G.T. (1989) “global optimization : a survey”, in New methods in optimization and their industrial uses, International Series of Numerical Mathematics Vol. 87, Birkhaüser, 133-155.

    Google Scholar 

  21. RIPLEY, B. (1987) Stochastic Simulation, J. Wiley & Sons.

    Book  MATH  Google Scholar 

  22. STREKALOVSKI, A. (1987) “On the global extremum problem”, Soviet. Math. Doklady 35, 194-198.

    MATH  Google Scholar 

  23. STREKALOVSKI, A. (1990) “On questions of global extremum in nonconvex extremal problems”, Izvestia Vysshih Uchebnyh Zavedenii 8, 74-80[In Russian].

    Google Scholar 

  24. STREKALOVSKI, A. (1993) “On search of global maximum of convex functions on a constraint set”, J. of Comp. Mathematics and Math. Physics 33, 349-363 [In Russian, to be translated].

    Google Scholar 

  25. THACH, P.T. “global optimality criterion and a duality with a zero gap in nonconvex optimization", to appear in SIAM J. Math. Analysis.

    Google Scholar 

  26. TORN, A. A. and ZILINSKAS, A. (1988) Global Optimization, Lecture Notes in Computer Science Vol. 350, Springer Verlag.

    Google Scholar 

  27. YUAN, Y. (1990) “On a subproblem of trust region algorithms for constrained optimization”, Math. Programming 47, 53-63.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hiriart-Urruty, JB. (1995). Conditions for Global Optimality. In: Horst, R., Pardalos, P.M. (eds) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2025-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2025-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5838-1

  • Online ISBN: 978-1-4615-2025-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics