Skip to main content

The Effects of Hypoxia and Hyperoxia on the 1/F Nature of Breath-by-Breath Ventilatory Variability

  • Chapter
Modeling and Control of Ventilation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 393))

Abstract

Fractal characteristics (self-similar, scale invariant fluctuations) have been found in many physiological time series including the firing of single neurons (10), the opening and closing of ion channels (10), and in heart rate (6) and blood pressure variability (7). A simple method of characterizing fractal fluctuations in a time series is by estimation of the spectral exponent or β from the power spectrum; βis the negative slope of a linear regression of the power spectrum plotted in a log-power, log-frequency plane. White noise has a value of β=o (same spectral power at all frequencies) whereas fractal “noise” (also referred to as coloured or nonharmonic noise) has values of β>o (see Figure 1). Power spectra with β>o are also called inverse power law spectra as spectral power is inversely proportional to frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benchetrit, G. and F. Bertrand. A short term memory in the respiratory centres: statistical analysis. Resp. Physiol. 23: 147–158, 1975.

    Article  CAS  Google Scholar 

  2. Bolton, D. P. G. and J. Marsh. Analysis and interpretation of turning points and run lengths in breath-bybreath ventilatory variables. J. Physiol. (London) 351: 451–459, 1984.

    CAS  Google Scholar 

  3. Eldridge, F. L., D. Paydarfar, P. G. Wagner, and R. T. Dowell. Phase resetting of respiratory rhythm: effect of changing respiratory “drive”. Am. J. Physiol. 257: R271–R277, 1989.

    PubMed  CAS  Google Scholar 

  4. Goodman, L. Oscillatory behavior of ventilation in resting man. IEEE Trans. Biomed. Eng. BME-11: 82–93, 1964.

    Article  PubMed  CAS  Google Scholar 

  5. Hughson, R. L. and Y. Yamamoto. On the fractal nature of breath-by-breath variation in ventilation during dynamic exercise. In: Control of Breathing and Its Modeling Perspectives, edited by Y. Honda, Y. Miyamoto, K. Konno, and J. Widdicombe. New York: Plenum Press, 1992, pp.255–262.

    Google Scholar 

  6. Kobayashi, M. and T. Musha 1/f Fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. BME-29: 456–457, 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Marsh, D. J., J. L. Osborn, and A. W. Cowley,Jr. 1/f Fluctuations in arterial pressure and regulation of renal blood flow in dogs. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 258: F1394–F1400, 1990.

    CAS  Google Scholar 

  8. Newsome-Davis, J. and D. Stagg. Interrelationships of the volume and time components of individival breaths in resting man. J. Physiol. (Lond.) 245: 481–498, 1975.

    Google Scholar 

  9. Sammon, M. Symmetry, bifurcations, and chaos in a distributed respiratory control system. J. Appl. Physiol. 77: 2481–2495, 1994.

    PubMed  CAS  Google Scholar 

  10. Stone, L. Coloured noise or low-dimensional chaos. Proc. R. Soc. Lond. [Biol.] 250: 77–81, 1992.

    Article  CAS  Google Scholar 

  11. Ward, S. A. Peripheral and central chemoreceptor control of ventilation during exercise in humans. Can. J. Appl. Physiol. 19: 305–333, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Whipp, B. J., N. Lamarra, S. A. Ward, J. A. Davis, and K. Wasserman. Estimating arterial PCO2 from flow-weighted and time-average alveolar PCO2 during exercise. In: Respiratory Control: A Modeling Perspective, edited by G. D. Swanson, F. S. Grodins, and R. L. Hughson. New York: Plenum Press, 1989, p. 91–100.

    Google Scholar 

  13. Yamamoto, Y. and R. L. Hughson. Extracting fractal components from time series. Physica D 68: 250–264, 1993.

    Article  Google Scholar 

  14. Yamamoto, Y. and R. L. Hughson. On the fractal nature of heart rate variability in humans: effects of data length and p-adrenergic blockade. Am. J. Physiol. 266: R40–R49, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tuck, S.A., Yamamoto, Y., Hughson, R.L. (1995). The Effects of Hypoxia and Hyperoxia on the 1/F Nature of Breath-by-Breath Ventilatory Variability. In: Semple, S.J.G., Adams, L., Whipp, B.J. (eds) Modeling and Control of Ventilation. Advances in Experimental Medicine and Biology, vol 393. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1933-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1933-1_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5792-6

  • Online ISBN: 978-1-4615-1933-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics