Skip to main content

Time-Temperature Effects on Microbial, Chemical and Sensory Changes During Cooling and Aging of Cheddar Cheese

  • Chapter
Chemistry of Structure-Function Relationships in Cheese

Abstract

Cheddar cheese requires several months of aging, during which operating costs and interests on capital significantly add to production costs. The flavor and aroma of aged Cheddar cheese is attributed to a complex mixture of chemical compounds (Lawrence and Gilles, 1987) which is influenced by the cheese microflora. The microflora consists of starter bacteria which reach maximum levels during cheese making and bacteria present in the milk after heat treatment or introduced during manufacturing (Chapman and Sharpe, 1981). Both starter and non-starter activity contributes extensively to finished cheese quality (Gilles and Lawrence, 1973; Fryer, 1982; Lawrence et al., 1983, 1984; Law, 1984). The temperature of the post hoop cheese block ranges between a high of 35°C at pressing to an aging temperature of 3.5-12°C. During the cooling period, a temperature gradient is established within the block of cheese. The extent of chemical and microbial activities at any given point within a cheese block will depend, in part, on the temperature profile over time at that point. Sensory characteristics and including textural parameters will reflect the extent of these activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almonacid-Merino, S.F. and Torres, J.A. 1993. Mathematical models to evaluate temperature abuse effects during distribution of refrigerated solid foods. J. Food Eng. 20:223.

    Article  Google Scholar 

  • Almonacid-Merino, S.F., Thomas, D.R., and Torres, J.A. 1993. Numerical and statistical methodology to analyze microbial spoilage of refrigerated solid foods exposed to temperature abuse. J. Food Sci. 58:914.

    Article  Google Scholar 

  • Almonacid-Merino, S.F., Thomas, D.R., and Torres, J.A. 1994. Shelf-life model for refrigerated foods exposed to temperature abuse: variability analysis of estimated values. J. Food Sci.: In Review.

    Google Scholar 

  • Aston, J.W. and Dulley, J.R. 1982. Cheddar cheese flavor. Aust. J. Dairy Tech. 47:59.

    Google Scholar 

  • Aston, J.W. and Douglas, K. 1983. The production of volatile compounds in Cheddar cheese during accelerated ripening. Aust. J. Dairy Technol. 83:66.

    Article  Google Scholar 

  • Aston, J.W., Gilles, J.E., Durward, I.G., and Dulley, J.R. 1985. Effect of elevated ripening temperatures on proteolysis and flavor development in Cheddar cheese. J. Dairy Res. 52:565.

    Article  Google Scholar 

  • Bailey, T. 1988. Personal communication: cooling data for 40 lb Cheddar cheese blocks on pallets. Tillamook County Creamery Assoc, Tillamook, OR.

    Google Scholar 

  • Banga, J. and Casares, J.J. 1987. ICRS: application to wastewater treatment plant model. IChemE Symposium Series 100:183.

    Google Scholar 

  • Barlow, I., Lloyd, G.T., Ramshaw, E.H., Miller, A.J., McCabe G.P., and McCabe, L. 1989. Correlations and changes in flavour and chemical parameters of Cheddar cheeses during maturation. Aust. J. Dairy Technol 5:7.

    Google Scholar 

  • Beveridge, G.S.G. and Schechter, R.S. 1970. “Optimization: Theory and Practice.” McGraw Hill, New York.

    Google Scholar 

  • Bhowmik, T. and Marth, E.H. 1990. Role of Micrococcus and Pediococcus species in cheese ripening. J. Dairy Sci. 73:859.

    Article  CAS  Google Scholar 

  • Bouzas, J. 1991. Time-temperature effects on Cheddar cheese ripening: an interpretation of microbial, chemical and sensory changes. PhD thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Bouzas, J., Kantt, C.A., Bodyfelt, F.W., and Torres, J.A. 1991a. Simultaneous determination of sugars and organic acids in Cheddar cheese by HPLC. J. FoodSci 56:276.

    Article  CAS  Google Scholar 

  • Bouzas, J., Simpson, R., Roncagliolo, S., and Torres, J.A. 1991b. Mathematical modeling, simulation and optimization of Cheddar cheese ripening. Annual Meeting of the American Dairy Science Association August 12–15, Logan, UT.

    Google Scholar 

  • Bouzas, J., Bodyfelt, F.W., and Torres, J.A. 1991c. A potential analytical assessment of Cheddar cheese flavor defects. Int. Dairy J.1:263–271.

    Article  CAS  Google Scholar 

  • Bouzas, J., Kantt, C.A., Bodyfelt, F.W., and Torres, J.A. 1993. Time-temperature influence on chemical aging indicators for a commercial Cheddar cheese. J. FoodSci 58:1307.

    Article  CAS  Google Scholar 

  • Chapman, H.R. and Sharpe, M.E. 1981. Microbiology of cheese, in “Dairy Microbiology,“ Vol. 2: “The Microbiology of Milk Products,“ R.K. Robinson, ed., Applied Science Publishers, London.

    Google Scholar 

  • Chen, M.H. and Larson, B.L. 1971. Pyrimidine synthesis pathway enzymes and orotic acid in bovine mammary tissue. J. DairySci 54:842.

    Article  CAS  Google Scholar 

  • Conochie, J. and Sutherland, B.J. 1965. The cooling of rindless cheese. Aust. J. Dairy Technol 20:36.

    Google Scholar 

  • Cromie S.J., Gilles, J.E., and Dulley, J.R. 1987. Effect of elevated ripening temperatures on the microflora of cheddar cheese. J. Dairy Res. 54:69.

    Article  Google Scholar 

  • DeMan, J.C., Rogosa, M., and Sharpe, M.E. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23:130.

    Article  Google Scholar 

  • Desmazeaud, J.M. and Gripon, J.C. 1977. General mechanism of protein breakdown during cheese ripening. Milchwissenschaft 32:731.

    CAS  Google Scholar 

  • Dulley, J.R. and Grieve, P.A. 1974. Volatile fatty acid production in Cheddar cheese. Aust. J. Dairy Technol. 29:120.

    CAS  Google Scholar 

  • Empie, M.W. and Melachouris, N. 1978. Determination of orotic acid in whey and modified whey products. J. DairySci 61:683.

    Article  CAS  Google Scholar 

  • Fordyce, A.M., Crow, V.L., and Thomas, T.D. 1984. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Appl. Environ. Micro. 48:332.

    CAS  Google Scholar 

  • Fox, P.F. 1989. Proteolysis during cheese manufacture and ripening. J. DairySci 72:1379.

    Article  CAS  Google Scholar 

  • Fryer, T.F. 1970. Utilization of citrate by lactobacilli isolated from dairy products. J. Dairy Res. 37:9.

    Article  CAS  Google Scholar 

  • Fryer, T.F. 1982. The controlled ripening of Cheddar cheese, in “Proceedings of the XXI International Dairy Congress,“ p. 485, Vol. 1, Book 1. Mir Publishers, Moscow.

    Google Scholar 

  • Gilles, J. and Lawrence, R.C. 1973. The assessment of Cheddar cheese quality by compositional analysis. N.Z.J. DairySci Technol. 8:148.

    CAS  Google Scholar 

  • Grazier, C.L. 1990. Effect of cooling temperature on the sensory and microbiological characteristics of Cheddar cheese. M.S. thesis, Oregon State University, Corvallis.

    Google Scholar 

  • Grazier, C.L., McDaniel, M.R., Bodyfelt, F.W., and Torres, J.A. 1991a. Temperature effects on the development of Cheddar cheese flavor and aroma. J. DairySci 74:3656.

    Article  Google Scholar 

  • Grazier, C.L., Simpson, R.J., Roncagliolo, S., and Torres, J.A. 1991b. Temperature effects on non-starter bacteria populations during cooling and aging of Cheddar cheese blocks. Annual Meeting of the American Dairy Science Association, August 12–15, Logan, UT.

    Google Scholar 

  • Grazier, C.L., Simpson, R., Roncagliolo, S., Bodyfelt, F.W., and Torres, J.A. 1993. Modelling of time-temperature effects on bacteria populations during cooling of Cheddar cheese blocks. J. Food Proc. Eng. 16:173.

    Article  Google Scholar 

  • Green, M.L. and D.J. Manning. 1982. Development of texture and flavour in cheese and other fermented products. J. Dairy Res. 49:737.

    Article  CAS  Google Scholar 

  • Harvey, R.J., and Collins, E.B. 1963. Role of citrate and acetoin in the metabolism of Streptococcus diacetilactis. J. Bacteriol. 86:1301.

    CAS  Google Scholar 

  • Ingraham, J.L. 1958. Growth of psychrophilic bacteria. J. Bacteriol. 76:75.

    CAS  Google Scholar 

  • Jensen, J.P., Reinbold, G.W., Washam, C.J., and Vedamuthu, E.R. 1975. Role of enterococci in Cheddar Cheese: proteolytic activity and lactic acid development. J. Milk Food Technol. 38:3.

    CAS  Google Scholar 

  • Kreith, F. 1976. “Principles of heat transfer,“ 3rd. ed. Intext Press, Inc., New York.

    Google Scholar 

  • Kuchroo, C.N., Rahilly, J., and Fox, P.F. 1983. Assessment of proteolysis in cheese by reaction with trinitrobenzenesulfonic acid. Ir. J. Food Sci. 7:129 .

    CAS  Google Scholar 

  • Laleye, L.C., Simard, R.E., Lee, B.H., and Holley, R.A. 1990. Quality attributes of Cheddar cheese containing added lactobacilli. J. FoodSci 55:114.

    Article  Google Scholar 

  • Lamparsky, D. and Klimes, I. 1981. Cheddar cheese flavour. Its formation in the light of new analytical results. In “Flavour ‘81, Third Weurman Symposium, Proceedings of the International Conference,“ Munich, April 28–30, p.557, P.P. Schreier, ed., Walter de Gruyter &Co., Berlin.

    Google Scholar 

  • Larson, B.L. and Hegarty, H.M. 1979. Orotic acid in milks of various species of commercial dairy products. J. DairySci 62:1641.

    Article  CAS  Google Scholar 

  • Larsen, S.J. 1991. Cooling rate of Cheddar cheese. M.S. Thesis, Dept. of Nutrition and Food Sciences, Logan, UT.

    Google Scholar 

  • Law, B.A. 1984. Flavour development in cheeses, in “Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk,“ p.187, F.L. Davies, ed., Elsevier Applied Science Publishers, London.

    Google Scholar 

  • Law, B.A., Castanon, M.J., and Sharpe, M.E. 1976a. The effect of non-starter bacteria on the chemical composition and the flavour of cheddar cheese. J. Dairy Res. 43:117.

    Article  CAS  Google Scholar 

  • Law, B.A., Castanon, M.J., and Sharpe, M.E. 1976b. The contribution of starter streptococci to flavour development in Cheddar cheese. J. Dairy Res. 43:301.

    Article  CAS  Google Scholar 

  • Law, B.A. and Sharpe, M.E. 1977. The influence of the microflora of Cheddar cheese on flavour development. Dairy Ind. Int. 42:10.

    CAS  Google Scholar 

  • Law, B.A. and Sharpe, M.E. 1978. Formation of methanethiol by bacteria isolated from raw milk and Cheddar cheese. J. Dairy Res. 45:267.

    Article  CAS  Google Scholar 

  • Law, B.A., Hosking, Z.D., and Chapman, H.R. 1979. The effect of some manufacturing conditions on the development of flavour in Cheddar cheese. J. Soc. Dairy Technol. 32:87–90.

    Article  Google Scholar 

  • Lawrence, R.C., Heap, H.A., Limsowtin,G., and Jarvis, A.W. 1978. Cheddar cheese starters: current knowledge and practices of phage characteristics and strain selection. J. DairySci 61:1181.

    Article  Google Scholar 

  • Lawrence R.C. and Gilles, J. 1980. The assessment of the potential quality of young Cheddar cheese. N.Z.J. Dairy Sci. Technol. 15:1.

    Google Scholar 

  • Lawrence, R.C., Gilles, J.E., and Creamer, L.K. 1983. The relationship between cheese texture and flavour. N.Z.J. Dairy Sci. Technol. 18:175.

    CAS  Google Scholar 

  • Lawrence, R.C., Heap, H.A., and Gilles, J.E. 1984. A controlled approach to cheese technology. J. DairySci 67:1632.

    Article  CAS  Google Scholar 

  • Lawrence, R.C. and Gilles, J. 1987. Cheddar cheese and related dry-salted cheese varieties, in “Cheese: Chemistry, Physics, and Microbiology,“ Vol. 2. P.F. Fox, ed., Elsevier Applied Science, London.

    Google Scholar 

  • Lee, B.H., Laleye, L.C., Simard, R.E., Munsch, M.-H., and Holley, R.A. 1990a. Influence of homofermentative lactobacilli on the microflora and soluble nitrogen components in Cheddar cheese. J. FoodSci 55:391.

    Article  CAS  Google Scholar 

  • Lee, B.H., Laleye, L.C., Simard, R.E., Holley, R.A., Emmons, D.B., and Giroux, R.N. 1990b. Influence of homofermentative lactobacilli on physicochemical and sensory properties of Cheddar cheese. J. FoodSci 55:386.

    Article  CAS  Google Scholar 

  • Levenspiel, O. 1972. Interpretation of batch reactor data, in “Chemical Reaction Engineering,“ p. 41, John Wiley &Sons Inc., NY.

    Google Scholar 

  • Lundahl, D.S. and McDaniel, M.R. 1988. The panelist effect -fixed or random? J. Sensory Studies 3:113.

    Article  Google Scholar 

  • Manning, D.J. 1979. Cheddar cheese flavour studies: II. Relative flavour contributions of individual volatile components. J. Dairy Res. 46:523.

    Article  CAS  Google Scholar 

  • Marsili, R., Ostapenko, H., Simmons, R.E., and Green, D.E. 1981. High-performance liquid Chromatographie determination of organic acids in dairy products. J. FoodSci 46:52.

    Article  CAS  Google Scholar 

  • Marsili, R. 1985. Monitoring chemical changes in Cheddar cheese during aging by HPLC and GC techniques. J. Dairy Sci. 68:3155.

    Article  CAS  Google Scholar 

  • McGugan, W.A., Emmons,D.B., and Larmond, E. 1979. Influence of volatile and non-volatile fractions on intensity of Cheddar cheese flavor. J. DairySci 62:398.

    Article  CAS  Google Scholar 

  • McMeekin, T.A., Chandler, R.E., Doet, P.E., Garland, C.D., Olley, J., Putros, S., and Ratkowsky, D.A. 1987. Model for the combined effect of temperature and salt concentrationJ.water activity on the growth rate of Staphylococcus xylosus. J. Appl. Biol. 62:543.

    CAS  Google Scholar 

  • Meilgaard, M., Civille, G.V., and Carr, B.T. 1987. “Descriptive analysis techniques: Sensory Evaluation Techniques,“ p. 1, Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  • Miah, A.H., Reinbold, G.W., Hartley, J.D., Vedamuthu, E.R., and Hammond, E.G. 1974. Characteristics of Cheddar cheese cooled at different rates during early curing stages. J. Milk Food Technol. 37:47.

    CAS  Google Scholar 

  • Moat, A.G. 1985. Biology of the lactic, acetic, and propionic bacteria, in “Biology of Industrial Microorganisms,“ Ch. 6, p. 143, A.L. Demain and N.A. Solomon, eds., Butterworths, Boston, MA.

    Google Scholar 

  • Moskowitz, G.J. 1980. Flavor development in cheese, in “The Analysis and Control of Less Desirable Flavors in Foods and Beverages,“ p.53, G. Charalambous, ed., Academic Press, New York.

    Google Scholar 

  • Nakae, T. and Elliot, J.A. 1965. Volatile fatty acids produced by some lactic acid bacteria. I. Factors influencing production of volatile fatty acids from caseinate hydrolysate. J. DairySci 48:287.

    Article  CAS  Google Scholar 

  • Neter, J., Wasserman, W., and Kutner, M.H. 1989. Nonlinear regression, in “Applied Linear Regression Models,“ p. 549, R.D. Irvin Inc., Boston, MA.

    Google Scholar 

  • O’Keefe, R.B., Fox, P.F., and Daly, C. 1976. Contribution of rennet and starter proteases to proteolysis in Cheddar cheese. J. Dairy Res. 43:97.

    Article  Google Scholar 

  • Petersen, R.G. 1985. Factorial experiments, in “Design and Analysis of Experiments,“ p. 112. Marcel Dekker Inc., NY.

    Google Scholar 

  • Peterson, S.D. and Marshall, R.T. 1990. Nonstarter lactobacilli in Cheddar cheese: A review. J. DairySci 73:1395.

    Article  Google Scholar 

  • Polychroniadou, A. 1988. A simple procedure using trinitrobenzenesulfonic acid for monitoring proteolysis in cheese. J. Dairy Res. 55:585.

    Article  CAS  Google Scholar 

  • Puchades, R., Lemieux, L., and Simard, R.E. 1989. Evolution of free amino acids during the ripening of Cheddar cheese containing added lactobacilli strains. J. FoodSci 54:885.

    Article  CAS  Google Scholar 

  • Reinbold, R.S. and Ernstrom, CA. 1985. Temperature profiles of Cheddar cheese pressed in 290 kg blocks. J. DairySci 68:54.

    Google Scholar 

  • Reiter, B., Fryer, T.F., Pickering, A., Chapman, H.R., Lawrence, R.C., and Sharpe, M.E. 1967. The effect of the microbial flora on the flavour and free fatty acid composition of Cheddar cheese. J. Dairy Res. 34:257.

    Article  CAS  Google Scholar 

  • Reiter, B., Sorokin, Y., Pickering, A., and Hall, A.J. 1969. Hydrolysis of fat and protein in small cheeses made under aseptic conditions. J. Dairy Res. 36:65.

    CAS  Google Scholar 

  • Rogosa, M., Mitchell, J.A., and Wiseman, R.F. 1951. A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J. Bacteriol. 62:132.

    CAS  Google Scholar 

  • Rosenberg, M. 1992. Cheese: the toughest lowfat challenge. Dairy Foods 93(5):44.

    Google Scholar 

  • Sandine, W.E. 1991. Personal communication. Dept. of Microbiology, Oregon State University, Corvallis.

    Google Scholar 

  • Schoolfíeld, R.M., Sharpe, P.J.H., and Magnuson, C.E. 1981. Non-linear regression of biological temperaturedependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88:719.

    Article  Google Scholar 

  • Schultz, E.F., Jr. 1955. Rules of thumb for determining expectations of mean squares in analysis of variance. Biometrics 6:123.

    Article  Google Scholar 

  • Sharpe, M.E. 1979. Lactic acid bacteria in the dairy industry. J. Soc. Dairy Technol. 32:9.

    Article  CAS  Google Scholar 

  • Spencer, R. and Baines, C.R. 1964. The effect of temperature on the spoilage of wet white fish. Food Technol. 18:769.

    Google Scholar 

  • Stadhouders, J. and Veringa, H.A. 1973. Fat hydrolysis by lactic acid bacteria in cheese. Neth. Milk Dairy J. 27:77.

    Google Scholar 

  • Stadhouders, J. and Hup, G. 1975. Factors affecting bitter flavour in Gouda cheese. Neth. Milk Dairy J. 29:335.

    Google Scholar 

  • Taoukis, P.S. 1989. Time temperature indicators. Presented at the IFT Short Course, “Minimally Processed Refrigerated Foods,“ June 24–25, Chicago, IL.

    Google Scholar 

  • Tellow, A.L. and Hoover, D.G. 1988. Fermentation products from carbohydrate metabolism in Pediococcus pentosaceous PC39. J. Food Prot. 51:804.

    Google Scholar 

  • Terzaghi, B.E. and Sandine, W.E. 1975. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29:807.

    CAS  Google Scholar 

  • Thomas, D. 1990. Personal communication. Dept. of Statistics, Oregon State University, Corvallis.

    Google Scholar 

  • Thomas, T.D., McKay, L.L., and Morris, H.A. 1985. Appl. Environ. Microbiol. 49:908.

    CAS  Google Scholar 

  • Torres, J.A, Bouzas, J., Larsen, S., and Hansen, C.L. 1992. Kinetic analysis and modeling of time-temperature effects on Cheddar flavor quality. Annual Meeting of the Institute of Food Technologists, June 20–24, New Orleans, LA.

    Google Scholar 

  • Turner, K.W. and T.D. Thomas. 1980. Lactose fermentation in Cheddar cheese and the effect of salt. N.Z.J. DairySci Technol. 15:265.

    CAS  Google Scholar 

  • Vedamuthu, E.R., Reinbold, G.W., Miah, A.H., and Washam, C.J. 1969. Post-hoop curd handling in the United States Cheddar cheese industry. J. DairySci 52:803.

    Article  Google Scholar 

  • Zuritz, C.A. and Sastry, S.K. 1985. Effect of packaging materials on temperature fluctuations in frozen foods: mathematical model and experimental studies. J. FoodSci 51:1050.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Torres, J.A. et al. (1995). Time-Temperature Effects on Microbial, Chemical and Sensory Changes During Cooling and Aging of Cheddar Cheese. In: Malin, E.L., Tunick, M.H. (eds) Chemistry of Structure-Function Relationships in Cheese. Advances in Experimental Medicine and Biology, vol 367. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1913-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1913-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5782-7

  • Online ISBN: 978-1-4615-1913-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics