Skip to main content

Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy

I. Assignments and Model Compounds

  • Chapter
Physicochemical Methods in the Study of Biomembranes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 23))

Abstract

During the last five years, the use of infrared spectroscopy (IR)* to determine the structure of biological materials has dramatically expanded. However, IR’s biggest advantage and highest potential over older techniques is in analyzing the components of biological membranes. IR is technically simple, requires little material (less than 0.1 μg) when attenuated total reflection spectroscopy (ATR) is used. Spectra are recorded in a matter of minutes; the environment of the studied molecules can be modified so that their conformation can be studied as a function of temperature, pressure, and pH, as well as in the presence of specific ligands. Because of IR’s long wavelength, light scattering problems are virtually nonexistent, and highly aggregated materials or large membrane fragments can be studied. Secondary structure evaluation is in most cases affected by neither amino acid side chains nor by the presence of disulfide bridges. In addition to the conformational parameters which can be deduced from the shape of the infrared spectra, the orientation of several molecular axes can be computed with polarized infrared spectroscopy. This allows more precise analysis of the general architecture of the membrane molecules within the biological membranes. The unique advantage of IR is that it allows simultaneous study of the structure of lipids and proteins in intact biological membranes without introduction of foreign probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bandekar, J., 1992, Amide modes and protein conformation, Biochem. Biophys. Acta 1120:123–143.

    PubMed  CAS  Google Scholar 

  • Bandekar, J., and Krimm, S., 1979, Vibrational analysis of peptides, polypeptides and proteins: characteristic amide bands of ß-turns, Proc. Natl. Acad. Sci U.S.A. 76:774–777.

    PubMed  CAS  Google Scholar 

  • Bandekar, J., and Krimm, S., 1980, Vibrational analysis of peptides, polypeptides and proteins. VI. Assignment of ß-turns modes in insulin and other proteins, Biopolymers 19:31–36.

    PubMed  CAS  Google Scholar 

  • Bandekar, J., and Krimm, S., 1985, Vibrational analysis of peptides, polypeptides and proteins. XXX. Normal mode analyses of ?-turns, Int. J. Peptide Protein Res. 26:407–415.

    CAS  Google Scholar 

  • Bazzi, M. D., and Woody, R. W., 1985, Oriented secondary structure in integral membrane proteins: circular dichroism and infrared spectroscopy of cytochrome c oxidase in multilamellar films, Biophys. J. 48:957–966.

    PubMed  CAS  Google Scholar 

  • Blundell, T., Barlow, D., Borkako, N., and Thornton, J., 1983, Solvent-induced distorsions and the curvature of a-helices, Nature 306:281–283.

    PubMed  CAS  Google Scholar 

  • Bradbury E. M., Brown L., Downie, A. R., Elliot, A., Fraser, R. D. B., and Handby, W. E., 1962, The structure of the ß-form of poly-ß-benzyl-L-aspartate, J. Mol. Biol. 5:230–247.

    PubMed  CAS  Google Scholar 

  • Brandi, C. J., and Deber, C. M., 1986, Hypothesis about the function of membrane-buried proline residues in transport proteins, Proc. Natl. Acad. Sci. U.S.A. 83:917–921.

    Google Scholar 

  • Brazhnikov, E. V., Chetverin, A. B., and Chirgadze, Y. N., 1978, Secondary structure of Na+, K+ dependent adenosine triphosphatase, FEBS Lett. 93:125–128.

    PubMed  CAS  Google Scholar 

  • Buchet R., Sandorty C., Trapane, T. L., and Urry, D. W., 1985, Infrared spectroscopic studies on gramicidin ion-channels: relation to the mechanism of anesthesia, Biochim. Biophys. Acta 821:8–16.

    PubMed  CAS  Google Scholar 

  • Buchet, R., Varga, S., Seidler, N. W., Molnar, E., and Martonosi, A., 1991, Polarized infrared attenuated total reflectance spectroscopy of the Ca2+-ATPase of sarcoplasmic reticulum, Biochim. Biophys. Acta 1068:201–216.

    PubMed  CAS  Google Scholar 

  • Cabiaux, V., Goormaghtigh, E., Wattiez, R., Falmagne, P., and Ruysschaert, J. M., 1989, Secondary structure of diphtheria toxin interacting with asolectin liposomes: An infrared spectroscopy study, Biochimie 71:153–158.

    PubMed  CAS  Google Scholar 

  • Carrier, D., and Pézolet, M., 1984, Raman spectroscopy study of the interaction of poly-L-lysine with dipalmitoylphosphatidylglycerol bilayers, Biophys. J. 46:497–506.

    PubMed  CAS  Google Scholar 

  • Carrier, D., and Pézolet, M., 1986, Investigation of polylysine-dipalmitoylphosphatidylglycerol interactions in model membranes, Biochemistry 25:4167–4174.

    PubMed  CAS  Google Scholar 

  • Carrier, D., Mantsch, H. H., and Wong, P. T. T., 1990a, Pressure-induced reversible changes in secondary structure of Poly (L-lysine): an IR spectroscopic study, Biopolymers 29:837–849.

    CAS  Google Scholar 

  • Carrier, D., Mantsch, H. H., and Wong, P. T. T., 1990b, Protective effect of lipidic surfaces against pressure-induced conformational changes of poly (L-lysine), Biochemistry 29:254–258.

    PubMed  CAS  Google Scholar 

  • Caughey, B. W., Dong, A., Bhat, K. S., Ernst, D., Hayes, S. F., and Caughey, W. S., 1991, Secondary structure analysis of the scrapie-associated protein Prp 27–30 in water by infrared spectroscopy, Biochemistry 30:7672–7680.

    PubMed  CAS  Google Scholar 

  • Cheam, T. C., and Krimm, S., 1985, Infrared intensities of amide modes in N-methylacetamide and poly-L-glycine I from ab initio calculations of dipole moment derivatives of N-methylacetamide, J. Chem. Phys. 82:1631–1641.

    CAS  Google Scholar 

  • Chirgadze, Y. N., and Brazhnikov, E. V., 1974, Intensities and other spectral parameters of infrared amide bands of polypeptides in the a-helical form, Biopolymers 13:1701–1712.

    PubMed  CAS  Google Scholar 

  • Chirgadze, Y. N., and Nevskaya, N. A., 1976a, Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet, Biopolymers 15:609–625.

    Google Scholar 

  • Chirgadze, Y. N., and Nevskaya, N. A., 1976b, Infrared spectra and resonance interaction of amide I vibration of the parallel-chain pleated sheet, Biopolymers 15:627–636.

    PubMed  CAS  Google Scholar 

  • Chirgadze, Y. N., Brazhnikov, E. V., and Nevskaya, N. A., 1976, Intramolecular distorsion of the a-helical structural of polypeptides, J. Mol. Biol. 102:781–792.

    PubMed  CAS  Google Scholar 

  • Chirgadze, Y. N., Fedorov, O. V., and Trushina, N. P., 1975, Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solution in heavy water, Biopolymers 14:679–694.

    PubMed  CAS  Google Scholar 

  • Chirgadze, Y. N., Shestopalov, B. V., and Venyaminov, S. Y., 1973, Intensities and other spectral parameters of infrared amide bands of polypeptides in the ß-and random forms. Biopolymers 12:1337–1351.

    PubMed  CAS  Google Scholar 

  • Clark, N. A., and Rothschild, K., 1982, Preparation of oriented multilamellar arrays of natural and artificial biological membranes, Methods Enzymol. 88:326–333.

    CAS  Google Scholar 

  • Clark, N. A., Rothschild, K., Luippold, D. A., and Simon, B. A., 1980, Surface-induced lamellar orientation of multilayer membrane arrays: theoretical analysis and a new method with application to purple membrane fragments, Biophys. J., 31: 65–96.

    PubMed  CAS  Google Scholar 

  • Cowan, S. W., and Rosenbusch, J., 1994, Folding pattern diversity of integral membrane proteins, Science 264:914–916.

    PubMed  CAS  Google Scholar 

  • Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P., 1992, crystal structures explain functional properties of two E. coli porins, Nature 358:727–733.

    PubMed  CAS  Google Scholar 

  • Deisenhofer, J., and Michel, H., 1989, The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis, EMBO J. 8: 2149–2170.

    PubMed  CAS  Google Scholar 

  • Draheim, J. E., Gibson, N. J., and Cassim, J. Y., 1991, Dramatic in situ conformational dynamics of the membrane protein bacteriorhodopsin, Biophys. J. 60:89–100.

    PubMed  CAS  Google Scholar 

  • Dwivedi, A. M., and Krimm, S., 1984, Vibrational analysis of peptides, polypeptides and proteins. XVIII Conformational sensitivity of the a-helix spectrum: aI and aIIPoly (L-alamine), Biopolymers 23:923–943.

    PubMed  CAS  Google Scholar 

  • Earnest, T. N., Herzfeld, J., and Rothschild, K. J., 1990, Polarized FTIR of bacteriohodopsin: trans-membrane a-helices are resistant to hydrogen-deuterium exchange, Biophys. J. 58:1539–1546.

    PubMed  CAS  Google Scholar 

  • Eckert, K., Grosse, R., Malur J., and Repke, K. R. H., 1977, Calculation and use of protein-derived conformation-related spectra for the estimate of the secondary structure of proteins from their infrared spectra, Biopolymers 16, 2549–2563.

    PubMed  CAS  Google Scholar 

  • Engelhard, M., Gerwert, K., Hess, B., Kreutz, W. and Sieben, F., 1985, Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: An investigation by static and time-resolved infrared difference spectroscopy using (4-13C) Aspartic acid labeled purple membrane, Biochemistry 24:400–407.

    PubMed  CAS  Google Scholar 

  • Fischbarg, J., Cheung, M., Czegledy, F., Li, J., Iserovich, P., Kuang, K., Hubbard, J., Garner, M., Rosen, O. M., Golde, D. W., and Vera, J. C., 1993, Evidence that facilitative glucose transporters may fold as ß-barrels, Proc. Natl. Acad. Sci. U.S.A. 90:11658–11662.

    PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., 1953, The interpretation of infrared dichroism in fibrous protein structures, J. Chem. Physics 21:1511–1515.

    CAS  Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1973, Conformation in fibrous proteins and related polypeptides Academic press, New York.

    Google Scholar 

  • Frey, S., and Tamm, L. K., 1991, Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared spectroscopy study, Biophys. J. 60:922–930.

    PubMed  CAS  Google Scholar 

  • Fringeli, U. P., Apell, H. J., Fringeli, M., Lauger, P., 1989, Polarized infrared absorption of Na+/K+-ATPase studied by attenuated total reflection spectroscopy, Biochem Biophys Acta, 984: 301–312.

    PubMed  CAS  Google Scholar 

  • George, A., and Veis, A., 1991, FTIRS in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro, Biochemistry 30:2372–2377.

    PubMed  CAS  Google Scholar 

  • Gill, T. J., Ladaulis, C. T., Kunz, H. W., and King, M. F., 1972, Studies of intramolecular transitions and intermolecular interactions of polypeptides by fluorescence techniques, Biochemistry 11:2644–2653.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., and Ruysschaert, J. M., 1990, Polarized attenuated total reflection spectroscopy as a tool to investigate the conformation and orientation of membrane components, in: Molecular Description of Biological Membranes by Computer-Aided Conformational Analysis (R. Brasseur, ed.) CRC Press Inc., Boca Raton, Florida.

    Google Scholar 

  • Goormaghtigh, E., Brasseur, R., Huart, P., and Ruysschaert, J. M., 1987, Study of the adriamycin-cardiolipin complex structure using Attenuated Total Reflection I.R. Spectroscopy, Biochemistry 26:1789–1794.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J. M., 1990, Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films, Eur. J. Biochem. 193:409–420.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., Cabiaux, V., De Meutter, J., Rosseneu, M., and Ruysschaert, J. M., 1993, Secondary structure of the particle associating domain of apolipoprotein B-100 in low-density lipoprotein by attenuated total reflection infrared spectroscopy, Biochemistry 32:6104–6110.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., De Meutter, J., Cabiaux, V., Szoka, F., and Ruysschaert, J. M., 1991a, Secondary structure and orientation of the amphipatic peptide GALA in lipid structures: An infrared spectroscopy approach, Eur. J. Biochem. 195:421–429.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., Martin, I., Vandenbranden, M., Brasseur, R., and Ruysschaert, J. M., 1989a, Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipids bilayers, Biochem. Biophys. Res. Commun. 158:610–616.

    PubMed  CAS  Google Scholar 

  • Goormaghtigh, E., Vigneron, L., Knibiehler, M., Lazdunski, C. and Ruysschaert, J. M. 1991b, Secondary structure of the membrane-bound form of the pore-forming domain of colicin A: a FTIR-ATR study, Eur. J. Biochem. 202:1299–1305.

    PubMed  CAS  Google Scholar 

  • Görne-Tschelnokow, U., Stecker, A., Kaduk, C., Naumann, D., and Hucho, F. 1994, The trans-membrane domains of the nicotinic acetylcholine receptor contain a-helical and ß structures. EMBO. J. 13:338–341.

    PubMed  Google Scholar 

  • Ghadiri, M. R., Granja, J. R., and Buehler, L. K., 1994, Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 368:301–304.

    Google Scholar 

  • Hanlon, S., 1970, Infrared studies on biopolymers and related models, in: Spectroscopic Approaches to Biomolecular Conformation, pp. 161–215, D. W. Urry, ed. American Medical Association, Chicago.

    Google Scholar 

  • Hefele-Wald, J., Goormaghtigh, E., De Meutter, J., Ruysschaert, J. M., and Jonas A. 1990, Investigation of the lipid domains and apoliporotein orientation in reconstituted high density lipoproteins by fluorescence and IR methods, J. Biol. Chem. 275:20044–20050.

    Google Scholar 

  • Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature 257:28–32.

    PubMed  CAS  Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H., 1990, Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy, J. Mol. Biol. 213:899–929.

    PubMed  CAS  Google Scholar 

  • Ishida, K. P., and Griffiths, P. R., 1993, Comparison of the amide I/II intensity ratio of solution and solid-stateproteins sampled by transmission, attenuated total reflectance, and diffuse reflectance spectroscopy, Appl. Spectrosc. 47:584–589.

    CAS  Google Scholar 

  • Jackson, M., Haris, P. I., and Chapman, D., 1989, Conformational transitions in poly (L-lysine): studies using Fourier transform infrared spectroscopy. Biochem. Biophys. Acta 998:75–79.

    CAS  Google Scholar 

  • Kimmich, R., Schnur, G., and Scheuermann, A., 1983, Spin-lattice relaxation and line shape parameters in nuclear magnetic resonance of lamellar lipid systems: Fluctuation and spectroscopy of disordering mechanisms, Chem. Phys. Lipids 32:271–322.

    CAS  Google Scholar 

  • Krimm, 1962, Infrared spectra and chain conformational of proteins, J. Mol. Biol. 4: 528–540.

    PubMed  CAS  Google Scholar 

  • Krimm, S., and Bandekar, J., 1980, Vibrational analysis of peptides, polypeptides and proteins. V. Normal vibrations of ß-turns, Biopolymers 19:1–29.

    PubMed  CAS  Google Scholar 

  • Krimm, S., and Bandekar, J., 1986, Vibrational spectroscopy and conformational of peptides, polypeptides and proteins, Advances Prot Chem 38: 181–364.

    CAS  Google Scholar 

  • Kühlbrandt, W., Wang, D. A., and Fujiyoshi, Y., 1994, Atomic model of plant light-harvesting complex by electron crystallography, Nature 367:614–621.

    PubMed  Google Scholar 

  • Lacsko, I., Hollosi, M., Ürge, L., Ugen, K. E., Weiner, D. B., Mantsch, H. H., Thurin, J., and Ötvös, Jr., 1992, Synthesis and conformational studies of N-glycosylated analogues of the HIV-1 principal neutralizing determinant, Biochemistry 31:4282–4288.

    Google Scholar 

  • Lagant, P., Vergoten, G., Fleury, G., and Loucheux-Lefebvre, A.-H., 1984, Vibrational normal modes of folded prolyl-containing peptides: application to ß turns, Eur. J. Biochem. 139:149–154.

    PubMed  CAS  Google Scholar 

  • Laroche, G., Carrier, D., and Pézolet, M., 1988, Study of the effect of poly (L-lysine) on phospha-tidic acid and phosphatidylcholine/ phosphatidic acid bilayers by Raman spectroscopy, Biochemistry 27:6220–6228.

    PubMed  CAS  Google Scholar 

  • Li M., Smith, J. L., Clark, D. C., Wilson, R., and Murphy D. J., 1992, Secondary structures of a new class of lipid body proteins from oilseeds, J. Biol. Chem. 267:8245–8253.

    PubMed  CAS  Google Scholar 

  • Marrero, H. and Rothschild, K. J. 1987, Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection, Biophys. J. 5:629–635.

    Google Scholar 

  • Michel, H., 1982, Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis, J. Mol. Biol. 158:567–572.

    PubMed  CAS  Google Scholar 

  • Miyazawa, T., 1960, Perturbation treatment of the characteristic vibrations of polypeptide chains in various configurations, J. Chem. Phys. 32:1647–1652.

    CAS  Google Scholar 

  • Miyazawa, T., and Blout, E. R., 1961, The infrared spectra of polypetides in different conformations: amide I and amide II bands, J. Am. Chem. Soc. 83:712–719.

    CAS  Google Scholar 

  • Moore, W. H., and Krimm, S., 1976a, Vibrational analysis of peptides, polypeptides and proteins. III. ß-poly (L-alanine) and ß-poly (L-alanylglycine), Biopolymers 15:2465–2483.

    PubMed  CAS  Google Scholar 

  • Moore, W. H., and Krimm, S., 1916b, Vibrational analysis of peptides, polypeptides and proteins. I. Polyglycine I, Biopolymers 15:2439–2464.

    Google Scholar 

  • Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G., and Lodish, H. F., 1985, Sequence and structure of a human glucose transporter, Science 229:941–945.

    PubMed  CAS  Google Scholar 

  • Nabedryk, E., Gingold, M. P., and Breton, J., 1982, Orientation of gramicidin A transmembrane channel. Infrared dichroism study of grammicidin in vesicles, Biophys. J. 38:243–249.

    PubMed  CAS  Google Scholar 

  • Nabedryk, E., and Breton, J., 1981, Orientation of intrinsic proteins in photosynthetic membranes. Polarized infrared spectroscopy of chloroplasts and chromatophores, Biochem. Biophys. Acta 635:515–524.

    PubMed  CAS  Google Scholar 

  • Naik, V. M., and Krimm, S., 1986a, Vibrational analysis in the structure of gramicidin A. I. Normal mode analysis, Biophys. J. 49:1131–1145.

    PubMed  CAS  Google Scholar 

  • Naik, V. M., and Krimm, S., 1986, Vibrational analysis of the structures of gramicidin A. II. Vibrational spectra, Biophys. J. 49:1147–1154.

    PubMed  CAS  Google Scholar 

  • Nevskaya, N. A., and Chirgadze, Y. N., 1976, Infrared spectra and resonance interactions of amide I and II vibrations of a-helix, Biopolymers 15:637–648.

    PubMed  CAS  Google Scholar 

  • Nishikawa, K., and Nogushi, T., 1991, Predicting protein secondary structure based on amino acid sequence, Methods Enzymol. 202:31–44.

    PubMed  CAS  Google Scholar 

  • Pande, J., Pande, C., Glig, D., Vasak, M., Callender, R. and Kagi, J. H. R., 1986, Raman, infrared, and circular dichroism spectroscopic studies on metallothionein: a predominantly “turn”-containing protein, Biochemistry 25:5526–5532.

    PubMed  CAS  Google Scholar 

  • Pastor, R. W., and Venable, R. M., 1988, Brownian dynamics simulation of a lipid chain in a membrane bilayer, J. Chem. Phys. 89:1112–1127.

    CAS  Google Scholar 

  • Peterson, N. O., and Chan, S. I., 1977, More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments, Biochemistry 16:2657–2667.

    Google Scholar 

  • Pimentel, G. C., and Sederholm, C. H., 1956, Correlation of infrared frequencies and hydrogen bond distances in crystals, J. Chem. Phys. 24:639–641.

    CAS  Google Scholar 

  • Rath, P., Bousché, O., Merill, A. R., Cramer, W. A., and Rothschild, K. J., 1991, FTIR evidence for a predominantly alpha-helical structure of the membrane bound channel forming C-terminal peptide of colicin El, Biophys. J. 59:516–522.

    PubMed  CAS  Google Scholar 

  • Romel, E., Noack, F., Meier, P., and Kothe, G., 1988, Proton spin relaxation dispersion studies of phospholipid membranes, J. Phys. Chem. 92:2981–2987.

    Google Scholar 

  • Rose, G. D., Gierasch, L. M., and Smith, J. A., 1985, Turns in peptides and proteins, Adv. Prot. Chem. 37:1–101.

    CAS  Google Scholar 

  • Rothschild, K. J., and Clark, N. A., 1979a, Anomalous amide I infrared absorption of purple membrane, Science 204:311–312.

    PubMed  CAS  Google Scholar 

  • Rothschild, K. J., and Clark, N. A., 1979, Polarized infrared spectroscopy of oriented purple membrane, Biophys. J. 25:473–488.

    PubMed  CAS  Google Scholar 

  • Rothschild, K. J., Sanches, R., Hsiao, T. L., and Clark, N. A., 1980, A spectroscopic study of rhodopsin alpha-helix orientation, Biophys. J. 31:53–64.

    PubMed  CAS  Google Scholar 

  • Rudolph, A. S., and Crowe, J. H., 1986, Biophys. J. A calorimetric and infrared spectroscopic study of the stabilizing solute proline, Biophys. J. 50:423–430.

    PubMed  CAS  Google Scholar 

  • Riiegg, M., Metzeger, V., and Susi, H., 1975, Computer analyses of characteristic infrared band of globular proteins, Biopolymers 14:1465–1471.

    Google Scholar 

  • Sanders, J. C., Haris, P. I., Chapman, D., and Hemminga, M. A., 1993, Secondary structure of M13 coat protein in phospholipids studied by circular dichroism, Raman, and Fourier transform infrared spectroscopy, Biochemistry 32:12446–12454.

    PubMed  CAS  Google Scholar 

  • Schrimer, T., and Cowan, S. W., 1993, Prediction of membrane-spanning ß-strands and its application to maltoporin, Prot. Sci. 2:1361–1363.

    Google Scholar 

  • Sengupta, P. K., and Krimm, S., 1985, Vibrational analysis of peptides, polypeptides and proteins. XXXII. a-poly (L-glutamic acid), Biopolymers 24:1479–1491.

    PubMed  CAS  Google Scholar 

  • Sengupta, P. K., Krimm, S., and Hsu, S. L., 1984, Vibrational analysis of peptides, polypeptides and proteins. XXI. ß-calcium-poly (L-glutamic acid), Biopolymers 23:1565–1594.

    CAS  Google Scholar 

  • Sibanda, B. L., and Thornton, J. M., 1991, Conformation of ß hairpins in protein structures: classification and diversity in homologous structures, Methods Enzymol. 202:59–82.

    PubMed  CAS  Google Scholar 

  • Speyer, J., Weber, R., Das Gupta, S., and Griffin, R., 1989, Anisotropic 2H NMR spin-lattice relaxation in L-(alpha) phase cerebroside bilayers, Biochemistry 28:9569–9574.

    PubMed  CAS  Google Scholar 

  • Subrahmanyeswara, U., Hennessey, J. P., and Scarborough, G. A., 1988, Protein chemistry of the Neurospora crassa plasma membrane H+-ATPase, Anal. Biochem. 173:251–264.

    Google Scholar 

  • Susi, H., Timaseff, S. N., and Stevens, L., 1967, Infrared spectra and protein conformations in aqueous solutions: I. The amide I band in H2O and D2O solutions, J. Biol. Chem. 242:5460–5466.

    PubMed  CAS  Google Scholar 

  • Suzuki, E., 1967, A quantitative study of the amide vibrations in the infrared spectrum of silk fibroin, Spectrochimica Acta 23A: 2303–2308.

    Google Scholar 

  • Thiaudière, E., Soekarjo, M., Kuchinka, E., Kuhn, A., and Vogel, H., 1993, Strustural characterization of membrane insertion of M13 procoat, M13 coat, and Pf3 coat proteins, Biochemistry 32:12186–12196.

    PubMed  Google Scholar 

  • Tonge, P. J., and Carey, P. R., 1992, Forces, bond length, and reactivity: fundamental insight into the mechanism of enzyme catalysis, Biochemistry 31:9122–9125.

    PubMed  CAS  Google Scholar 

  • Torii, H., and Tasumi, M., 1992, Model calculations on the amide I infrared bands of globular proteins, J. Chem. Phys. 96:3379–3387.

    CAS  Google Scholar 

  • Tsuboi, M., 1962, Infrared dichroism and molecular conformation of a-form poly-?-benzyl-L-glutamate, J. Polymer Sci. 59:139–153.

    CAS  Google Scholar 

  • Unwin, N., 1993, Nicotinic acetylcholine receptor at 9 Å resolution, J. Mol. Biol. 229:1101–1124.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., Shaw, R. G., Trapane, T. L., and Prasad, K. U., 1983, Infrared spectra of the gramicidin A transmembrane channel: the single-stranded-beta 6-helix, Biochem. Biophys. Res. Commun. 114:373–379.

    PubMed  CAS  Google Scholar 

  • Venyaminov, S. Y., and Kalnin, N. N., 1990a, Quantitative IR spectrophotometry of peptides compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption band, Biopolymers 30:1243–1257.

    PubMed  CAS  Google Scholar 

  • Venyaminov, S. Y., and Kalnin, N. N., 1990b, Quantitative IR spectrophotometry of peptides compounds in water (H2O) solutions. II. Amide absorption bands of polypeptides and fibrous proteins in a-, ß-and random conformations, Biopolymers 30:1259–1271.

    PubMed  CAS  Google Scholar 

  • Walian, P. J., and Jap, B. K., 1990, Three-dimensional diffraction of PhoE porin to 2.8 Å resolution, J. Mol. Biol. 215:429–438.

    PubMed  CAS  Google Scholar 

  • Wallace, B. A., Cascio, M., and Mielke, D. L., 1986, Evaluation of methods for the prediction of membrane protein secondary structures, Proc. Natl. Acad. Sci. USA 83:9423–9427.

    PubMed  CAS  Google Scholar 

  • Weiss, M. S., Kreusch, A., Schütz, E., Nestel, U., Weite, W., Weckesser, J., and Schulz, G. E., 1991b, The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution, FEBS Lett. 280:379–382.

    PubMed  CAS  Google Scholar 

  • Weiss, M. S., Wacker, T., Weckesser, J., Weite, W., and Schulz, G. E., 1990, The three-dimensional structure of porin from Rhodobacter capsulatus at 3 Â resolution, FEBS Lett. 267:268–272.

    PubMed  CAS  Google Scholar 

  • Weiss, M. S., Abele, U., Weckesser, W., Schütz, E., and Schulz, G. E., 1991a, Molecular architecture and electrostatic properties of a bacterial porin, Science 254:1627–1630.

    PubMed  CAS  Google Scholar 

  • Yang, P. W., Stewart, L. C. and Mantsch, H. H., 1987, Polarized attenuated total reflectance spectra of oriented purple membranes, Biochem. Biophys. Res. Commun. 145:298–302.

    PubMed  CAS  Google Scholar 

  • Zimmerman, S. S., and Mandelkern, L., 1975, The precipitation of poly-L-glutamic acid. I. a-precipitation, Biopolymers 14:567–584.

    PubMed  CAS  Google Scholar 

  • Zimmerman, S. S., Clark, J. C., and Mandelkern, L., 1975 The precipitation of poy-L-glutamic acid. II. ß-precipitation, Biopolymers 14:585–596.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goormaghtigh, E., Cabiaux, V., Ruysschaert, JM. (1994). Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy. In: Hilderson, H.J., Ralston, G.B. (eds) Physicochemical Methods in the Study of Biomembranes. Subcellular Biochemistry, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1863-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1863-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5757-5

  • Online ISBN: 978-1-4615-1863-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics