Skip to main content

The Identification of Heterogeneity of 5-HT3 Receptors with [3H]RS-42358-197

  • Chapter
Neurochemistry in Clinical Application

Abstract

The diverse pharmacological action of serotonin (5-HT) has been the subject of intense study since its identification in 1936.1 The diversity of actions include activation or inhibition of smooth and cardiac muscle, exocrine and endocrine glands, cells of the hematopoietic and immune systems, as well as central and peripheral neurons.2,3 The results of these investigations have led to the identification of at least 12 different 5-HT receptors based on operational (functional, antagonism, location), transductional (G-protein, ion channel), and structural (gene sequence, chromosomal location) criteria.4 Based on these criteria, 5-HT receptors have been grouped into 5 types, namely 5-HT1 5-HT2, 5-HT3, 5-HT4, and 5-HT5 receptors.5,6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Peroutka, 5-hydroxytryptamine receptor subtypes, Ann. Rev. Pharmacol. Toxicol 67: 373 (1990).

    CAS  Google Scholar 

  2. P.M. Whitaker-Azmitia and S.J. Peroutka The neuropharmacology of serotonin. Ann. NY. Acad. Sci. 600: 233 (1990).

    Google Scholar 

  3. J.R. Fozard and P.R. Saxena, “Serotonin: Molecular Biology, Receptors and Functional Effects”. Birkauser, Basel (1991).

    Book  Google Scholar 

  4. P.P.A. Humprey, P. Hartig and D. Hoyer, A re-appraisel of 5-HT receptor classification. Proceedings of the 2nd International Symposium on Serotonin: From Cell Biology to Pharmacology and therapeutics, Kluwer, Houston (1992).

    Google Scholar 

  5. P.B. Bradley, G. Engel, W. Feniuk, J.R. Fozard, P.P.A. Humphrey, D.N. Middlemiss, E.J. Mylecharane, B.P. Richardson and P.R. Saxena, Proposals for the classification and nomenclature of functional receptors for 5-hydroxytrpyamine, Neuropharmacol. 25: 563 (1986).

    Article  CAS  Google Scholar 

  6. D. Clarke and J. Bockaert, 5-HT4 receptor: Current Status, Med. Res. Rev.: in press (1993).

    Google Scholar 

  7. V. Derkach, A. Suprenant and R.A. North, 5-HT3 receptors are membrane ion channels, Nature 339: 706 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. A.V. Maricq, A.S. Peterson, A.J. Brake, R.M. Myers and D. Julius, Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel, Science 254: 432 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. J.R. Fozard, Neuronal 5-HT3 receptors in the periphery, Neuropharmacol 23: 1473 (1984).

    Article  CAS  Google Scholar 

  10. J.R. Fozard, “The peripheral actions of 5-hydroxytryptamine.” Oxford University Press, Oxford (1989).

    Google Scholar 

  11. G.J. Kilpatrick, B.J. Jones and M.B. Tyers, Identification and distribution of 5-HT3 receptor in rat brain using radioligand binding, Nature 330: 746(1987).

    Article  PubMed  CAS  Google Scholar 

  12. N.A. Sharif, E.H.F. Wong, D.N. Loury, E. Stefanich, A.D. Michel, R.M. Eglen and R.L. Whiting, Characterization of 5-HT3 binding sites in NG108-15, NCB-20 neuroblastoma cells and rat cerebral cortex using [3H]-quipazine and [3H]-GR 65630 binding, Br. J. Pharmacol. 102: 919 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. D. Hoyer, and D.H.C. Neijt, Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding, Mol. Pharmacol. 33: 303 (1988).

    PubMed  CAS  Google Scholar 

  14. H.C. Neijt, A. Karpf, P. Schoeffter, G. Engel and D. Hoyer,. Characterization of 5-HT3 recognition sites in membranes of NG 108-15 neuroblastoma-glioma cells with [3H] ICS 205, 930, Naunyn-Schmiedeberg’s Arch. Pharmacol. 33: 493 (1988).

    Google Scholar 

  15. K.J. Watling, S. Aspley, S., Swain, and Saunders J. (1988) [3H] Quaternised ICS 205-930 labels 5-HT3 receptor binding sites in rat brain, Eur. J. Pharmacol. 149, 397–398.

    Article  PubMed  CAS  Google Scholar 

  16. R.M. McKernan, N.P. Gillard, K. Quirk, C.O. Kneen, G.I. Stevenson, C.J. Swain, and C.I. Ragan, Purification of the 5-hydroxytryptamine 5-HT3 receptor from NCB20 cells, J. Biol. Chem. 265: 13572 (1990).

    PubMed  CAS  Google Scholar 

  17. D.M. Milburn and S.J. Peroutka, Characterization of [3H]quipazine binding to 5-hydroxytryptamine3 receptors in rat brain membranes, J. Neurochem. 52: 1787 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. L. Pinkus, N.S. Sarbin, D.S. Barefoot and J.C. Gordon, Association of [3H]zacopride with 5-HT3 binding sites, Eur. J. Pharmacol. 168: 355(1989).

    Article  PubMed  CAS  Google Scholar 

  19. J.M. Barnes, N.M. Barnes, B. Costall, J.W. Ironside and R.J. Naylor, Identification and characterization of 5-hydroxytryptamine3 recognition sites in human brain tissue, J. Neurochem. 53: 1787 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. D.R. Nelson and D.R. Thomas, [3H]-BRL43694 (Granisetron), a specific ligand for 5-HT3 binding sites in rat brain cortical membranes, Biochem. Pharmacol. 38: 1693 (1989).

    Article  PubMed  CAS  Google Scholar 

  21. D.T. Wong, D.W. Robertson and L.R. Reid, Specific [3H]LY 278584 binding to 5-HT3 recognition sites in rat cerebral cortex, Eur. J. Pharmacol. 166: 107 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. A.M. Laporte, T. Koscielniak, M. Ponchant, D. Verge, M. Hamon and H. Gozlan, Quantitative autoradiog-raphic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands, Synapse 10: 271 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. E.H.F. Wong, I. Wu, R.M. Eglen and R.L. Whiting, Labeling of species variants of 5-hydroxytryptamine3 (5-HT3) receptors by a novel 5-HT3 receptor ligand [3H]RS-42358-197, Br. J. Pharmacol. 105: 33P (1992).

    Article  Google Scholar 

  24. B.P. Richardson and G. Engel G. The pharmacology and function of 5-HT3 receptors, Trends Neurosci. 7: 424 (1986).

    Article  Google Scholar 

  25. J.A. Peters, J.J. Lambert and H.M. Malone, Physiological and pharmacological aspects of 5-HT3 receptor function. In “Aspects of Synaptic Transmission: LTP, Galanin, Opioid, Autonomie, 5-HT” (ed. Stone T.W.), pp. 283, Taylor & Francis, London (1991).

    Google Scholar 

  26. M.S. Aapro, 5-HT3 receptor antagonists: An overview of their present status and future potential in cancer therapy-induced emesis, Drug 42: 551 (1991).

    Article  CAS  Google Scholar 

  27. B. Costall, R.J. Naylor and M.B. Tyers, The psychopharmacology of 5-HT3 receptors, Pharmacol. Ther. 47: 181 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. M.D. Tricklebank, Interactions between dopamine and 5-HT3 receptors suggest new treatments for psychosis and drug addiction, Trends Pharmacol. Sci. 10: 127(1989).

    Article  PubMed  CAS  Google Scholar 

  29. E.H.F. Wong, D.W. Bonhaus, E. Stefanich, and R.M. Eglen, Labeling of 5-hydroxytryptamine3 receptors with a novel 5-HT3 receptor ligand, [3H]RS-42358-197, J. Neurochem. 60: 921 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. R.M. Eglen, C. Lee, W.L. Smith, L.G. Johnson, R.L. Whiting and S.S. Hedge, RS-42358-197, a novel and potent 5-HT3 receptor antagonist, in vitro and in vivo, J. Pharmacol. Exp. Ther., in press (1993).

    Google Scholar 

  31. B. Costall, A.M. Domeney, M.E. Kelly, D.M. Tomkurs, R.J. Naylor, E.H.F. Wong, W.L. Smith, R.L. Whiting and R.M. Eglen, The effect of the 5-HT3 receptor antagonist, RS-42358-197, in animal models of anxiety, Eur. J. Pharmacol. 234: 91 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. Y.C. Cheng and W.H. Prusoff, Relationship between inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction, Biochem. Pharmacol. 92: 881 (1973).

    Google Scholar 

  33. J.O. Marcusson, M Bergstrom, K. Eriksson and S.B. Ross, Characterization of [3H]paroxetine binding in rat brain, J. Neurochem. 50: 1783 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. A. Butler, C.J. Elswood, J. Burridge, SJ. Ireland, K.T. Bunce, G.J. Kilpatrick and M.B. Tyers, The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues, Br. J. Pharmacol. 101: 591(1990).

    Article  PubMed  CAS  Google Scholar 

  35. R.M. Eglen, S.R. Swank, L.K.M. Walsh and R.L. Whiting, Characterization of 5-HT3 and’ atypical’ 5-HT receptors mediating guinea-pig ileal contractions in vitro., Br. J. Pharmacol. 101: 513 (1990).

    Google Scholar 

  36. N.R. Newberry, S.H. Cheshire and M.J. Gilbert, Evidence that 5-HT3 receptors of the rat, mouse and guinea pig superior cervical ganglion may be different. Brit. J. Pharmacol. 102: 615 (1991).

    Article  CAS  Google Scholar 

  37. H.M. Malone, J.A. Peters. and J.J. Lambert, Physiological and pharmacological properties of 5-HT3 receptors-a patch clamp-study, Neuropeptide 19: 25(1991).

    Article  CAS  Google Scholar 

  38. J.R. Fozard, 5-HT3 receptors in the context of the multiplicity of 5-HT receptors. In “Central and Peripheral 5-HT3 receptors”, ed. Hamon, M., Academic Press Ltd., London (1992).

    Google Scholar 

  39. G.J. Kilpatrick, B.J. Jones and MB. Tyers, 1-(m-chlorophenyl)-biguanide, a potent high affinity 5-HT3 receptor agonist, Eur. J. Pharmacol. 182: 193 (1990).

    Article  PubMed  CAS  Google Scholar 

  40. G.J. Kilpatrick and M.B. Tyers, Inter-species variants of the 5-HT3 receptor, Biochem. Soc. Trans. 20: 118 (1992).

    PubMed  CAS  Google Scholar 

  41. J.A. Peters, H.M. Malone and J.J. Lambert, Characterization of 5-HT3 receptor mediated electrical responses in nodose ganglion neurones and clonal neuroblastoma cells maintained in culture. In “Serotonin: Molecular Biology, Receptors and Functional Effects” (ed. Fozard, J.R. and Saxena, P.R.), pp. 84–94. Birkhauser, Basel (1991).

    Chapter  Google Scholar 

  42. K. Miyata, T. Kamato, A. Nishida, H. Ito, Y. Katsuyama, A. Iwai, H. Yuli, M. Yamano, R. Tsutsumi, M. Ohta, M. Takeda and K. Honda, Pharmacological profile of (R)-5-[(1-methyl-3-indolyl)carbonyl]-4, 5, 6, 7-tetrahydro-1H-benzimida-zole hydrochloride (YM060), a potent and selective 5-hydroxytryptamine3 receptor antagonist, and its enantiomer in the isolated tissue, J. Pharmacol. Exp. Ther. 259: 15 (1991).

    PubMed  CAS  Google Scholar 

  43. J.M. Barnes, N.M. Barnes, B. Costall, S.M. Jagger, R.J. Naylor and D.W. Robertson, Agonist interactions with 5-HT3 receptor recognition sites in the rat entorhinal cortex labeled by structurally diverse radioligands, Br. J. Pharmacol. 105: 500 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. D.W. Bonhaus, R.M. Eglen and E.H.F. Wong, Allosteric interactions of agonists and antagonists at 5-hydroxytryptamine (5-HT3) receptors, Society for Neuroscience Abstracts 18: 1518 (1992).

    Google Scholar 

  45. E.H.F. Wong, J. Lee, D.N. Loury, R.M. Eglen and R.L. Whiting, Heterogeneity of 5-HT3 receptors as labeled by [3H]GR65630 and [3H]quipazine, J. Neurochem. 57: S136 (1991).

    Article  Google Scholar 

  46. L. Cicin-Sain and P. Jenner, Localization and characterization of 5-HT3 receptors in the forebrain of the rat identified by the specific binding of [3H]GR 65630, Neurosci. Res. Comm. 10: 17 (1992).

    CAS  Google Scholar 

  47. N.A. Sharif, J.L. Nunes, Z.P. To, E.H.F. Wong, R.M. Eglen and R.L. Whiting, Quantitative autoradiographic distribution of 5-HT3 receptors in rat, ferret and dog brain, Br. J. Pharmacol. 102: 142P (1991).

    Article  Google Scholar 

  48. G.J. Kilpatrick, B.J. Jonesand M.B. Tyers, Binding of the 5-HT3 ligand, [3H] GR65630, to rat areapostrema, vagus nerve and the brains of several species, Eur. J. Pharmacol. 159: 157 (1989).

    Article  PubMed  CAS  Google Scholar 

  49. S.C. Lummis, G.J. Kilpatrick and I.L. MArtin, Charaacterization of 5-HT3 receptors in intact N1E-115 neuroblastoma cells, Eur. J. Pharmacol. 189: 223.

    Google Scholar 

  50. A.W. Schmidt, S.D. Hurt and S.J. Peroutka, [3H]quipazine degradation products label 5-HT uptake sites, Eur. J. Pharmacol. 171: 141 (1989).

    Article  PubMed  CAS  Google Scholar 

  51. J.O. Marcusson, M. Bergstrom, K. Eriksson and S.B. Ross, Characterization of [3H]paroxetine binding in rat brain, J. Neurochem. 50: 1783 (1988).

    Article  PubMed  CAS  Google Scholar 

  52. E.H.F. Wong, D.W. Bonhaus, J.A. Lee, I. Wu, D.N. Loury and R.M. Eglen, Different densities of 5-HT3 receptors are labeled by [3H]quipazine, [3H]GR 65630 and [3H]granisetron, Neuropharmacol. 32: in press (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, E.H.F., Bonhaus, D.W., Eglen, R.M. (1995). The Identification of Heterogeneity of 5-HT3 Receptors with [3H]RS-42358-197. In: Tang, L.C., Tang, S.J. (eds) Neurochemistry in Clinical Application. Advances in Experimental Medicine and Biology, vol 363. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1857-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1857-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5754-4

  • Online ISBN: 978-1-4615-1857-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics