Skip to main content

Role of Nutrients in the Cause and Prevention of Oxygen Radical Pathology

  • Chapter
Free Radicals in Diagnostic Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 366))

Abstract

Nutrients function in both the generation and catabolism of oxygen radicals, i.e., as oxidants and antioxidants. Experimental animals fed large excesses of prooxidant nutrients, such as polyunsaturated fatty acids and iron, develop pathologies that have been firmly linked to the formation of toxic concentrations of oxygen radicals in the tissues. Similar pathologies have been demonstrated to occur as a result of experimental deficiencies of some antioxidant nutrients, notably vitamin E and selenium. Clinical diseases resulting from dietary deficiencies of these nutrients also have been well documented in farm animals. There is evidence that pharmacological intakes of some antioxidants may reduce the risk of developing some clinical diseases associated with oxygen radical pathology in human subjects consuming a normal diet and ameliorate the tissue damage associated with others. It remains unclear, however, whether oxygen radical pathology occurs in humans as a result of inadequate or excessive intakes of nutrients from the general food supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Karlsson, J. Sandström, A. Edlund, T. Edlund, and S.L. Marklund, Pharmacokinetics of extracellular-superoxide dismutase in the vascular system, Free Rad. Biol. Med. 14:185 (1993).

    CAS  PubMed  Google Scholar 

  2. T. Adachi, H. Ohta, H. Yamada, A. Futenma, K. Kato, and K. Hirano, Quantitative analysis of extracellular-superoxide dismutase in serum and urine by ELISA with monoclonal antibody, Clin. Chim. Acta 212:89 (1992).

    CAS  PubMed  Google Scholar 

  3. D.A. Peterson and J.W. Eaton, Electron transfer facilitated by superoxide dismutase: a model for membrane redox systems?, Biochem. Biophys. Res. Commun. 165:164 (1989).

    CAS  PubMed  Google Scholar 

  4. M.B. Yim, P.B. Chock, and E.R. Stadtman, Enzyme function of copper, zinc superoxide dismutase as a free radical generator,. J. Biol. Chem. 268:4099 (1993).

    CAS  PubMed  Google Scholar 

  5. B. Halliwell and J.M.C. Gutteridge, “Free Radicals in Biology and Medicine” (2nd ed.), Clarendon Press, Oxford (1989).

    Google Scholar 

  6. D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J.P. O’Regan, H.-X. Deng, Z. Rahmani, A. Krizus, D. McKenna-Yasek, A. Cayabyab, S.M. Gaston, R. Berger, R.E. Tanzi, J.J. Halperin, B. Herzfeldt, R. Van den Bergh, W.-Y. Hung, T. Bird, G. Deng, D.W. Mulder, C. Smyth, N.G. Laing, E. Soriano, M.A. Pericak-Vance, J. Haines, G.A. Rouleau, J.S. Gusella, H.R. Horvitz, and R.H. Brown, Jr. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59 (1993).

    CAS  PubMed  Google Scholar 

  7. S.I. Liochev and I. Fridovich, The role of O2•— in the production of HO• in vitro and in vivo, Free Rad. Biol. Med. 16:29 (1994).

    CAS  PubMed  Google Scholar 

  8. J.S. Stamler, D.J. Single, and J. Loscalzo, Biochemistry of nitric oxide and its redoxactivated forms, Science 258:1898 (1992).

    CAS  PubMed  Google Scholar 

  9. G. Yang, T.E.G. Candy, M. Boaro, H.E. Wilkin, P. Jones, N.B. Nazhat, R.A. Saadalla-Nazhat, and D.R. Blake, Free radical yields from the homolysis of peroxynitrous acid, Free Rad. Biol. Med. 12:327 (1992).

    CAS  PubMed  Google Scholar 

  10. S.A. Lipton, Y.-B. Choi, Z.-H. Pan, S.Z. Lei, H.-S.V. Chen, N.J. Sucher, J. Loscaizo, D.J. Singel, and J.S. Stamler, A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds, Nature 364: 626 (1993).

    CAS  PubMed  Google Scholar 

  11. Y. Henry, M. Lepoivre, J.-C. Drapier, C. Ducrocq, J.-L. Boucher, and A. Guissani, EPR characterization of molecular targets for NO in mammalian cells and organelles, FASEB J. 7:1124 (1993).

    CAS  PubMed  Google Scholar 

  12. Y. Rayssiguier, E. Gueux, L. Bussiere, and A. Mazur, Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats, J. Nutr. 123:1343 (1993).

    CAS  PubMed  Google Scholar 

  13. M. Fields, J. Ferretti, J.C. Smith, and S. Reiser, Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues, Biol. Trace Elem. Res. 6:379 (1984).

    CAS  Google Scholar 

  14. M. Fields, C.G. Lewis, M. Lure, and W.E. Antholine, The influence of gender on developing copper deficiency and on free radical generation of rats fed a fructose diet, Metabolism 41:989 (1992).

    CAS  PubMed  Google Scholar 

  15. S.K. Nelson, C-J. Huang, M.M. Mathias, and K.G.D. Allen, Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats, J. Nutr. 122:2101 (1992).

    CAS  PubMed  Google Scholar 

  16. J.R. Prohaska, Biochemical changes in copper deficiency, J. Nutr. Biochem. 1:453 (1990).

    Google Scholar 

  17. R.G. Allen, Oxygen-reactive species and antioxidant responses during development: the metabolic paradox of cellular differentiation, Proc. Soc. Exp. Biol. Med. 196:117 (1991).

    CAS  PubMed  Google Scholar 

  18. A.S. Prasad, A. Miele, Jr., Z. Farid, H.H. Sandstead, A.R. Schubert, and W.J. Darby, Biochemical studies on dwarfism, hypogonadism and anemia, Arch. Intern. Med. 111:407 (1963).

    CAS  PubMed  Google Scholar 

  19. R.A. DiSilvestro and G.P. Carlson, Effects of mild zinc deficiency, plus or minus acute phase response, on CC14 hepatotoxicity, Free Rad. Biol. Med. 16:57 (1994).

    CAS  PubMed  Google Scholar 

  20. J.D. Hammermueller, T.M. Bray, and W.J. Bettger, Effect of zinc and copper deficiency on microsomal NADPH-dependent active oxygen generation in rat lung and liver J. Nutr. 117:894 (1987).

    CAS  PubMed  Google Scholar 

  21. J.F. Sullivan, M.M. Jetton, H.K. Hahn, and R.E. Burch, Enhanced lipid peroxidation in liver microsomes of zinc-deficient rats, Am. J. Clin. Nutr. 33:51 (1980).

    CAS  PubMed  Google Scholar 

  22. T.M. Bray and W.J. Bettger, The physiological role of zinc as an antioxidant, Free Rad. Biol. Med. 8:281 (1990).

    CAS  PubMed  Google Scholar 

  23. W.J. Bettger, and B.L. O’Dell, Physiological roles of zinc in the plasma membrane of mammalian cells, J. Nutr. Biochem. 4:194 (1993).

    CAS  Google Scholar 

  24. S. Zidenberg-Cherr, C.L. Keen, B. Lönnerdal, and L.S. Hurley, Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by manganese deficiency,. J. Nutr. 113:2498 (1983).

    CAS  PubMed  Google Scholar 

  25. K.H. Thompson, D.V. Godin, and M. Lee, Tissue antioxidant status in streptozotocin-induced diabetes in rats. Effects of dietary manganese deficiency, Biol. Trace Elem. Res. 35:213 (1992).

    CAS  PubMed  Google Scholar 

  26. K.H. Thompson and M. Lee, Effects of manganese and vitamin E deficiencies on antioxidant enzymes in streptozotocin-diabetic rats, J. Nutr. Biochem. 4:476 (1993).

    CAS  Google Scholar 

  27. S. Samman, Dietary versus cellular zinc: the antioxidant paradox, Free Rad. Biol. Med. 14:95 (1993).

    CAS  PubMed  Google Scholar 

  28. K.T. Tamai, E.B. Gralla, L.M. Ellerby, J.S. Valentine, and D.J. Thiele, Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase, Proc. Natl. Acad. Sci. USA 90:8013 (1993).

    CAS  PubMed  Google Scholar 

  29. M. Sato and I. Bremner, Oxygen free radicals and metallothionein, Free Rad. Biol. Med. 14:325 (1993).

    CAS  PubMed  Google Scholar 

  30. T.C. Stadtman, Specific occurrence of selenium in enzymes and amino acid tRNAs, FASEB J. 1:375 (1987).

    CAS  PubMed  Google Scholar 

  31. F.-F. Chu, J.H. Doroshow, and R.S. Esworthy, Expression, characterization and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI, J. Biol. Chem. 268:2571 (1993).

    CAS  PubMed  Google Scholar 

  32. R.A. Sunde, J.A. Dyer, T.V. Moran, J.K. Evenson, and M. Sugimoto, Phospholipid hydroperoxide glutathione peroxidase: full-length pig blastocyst cDNA sequence and regulation by selenium status, Biochem. Biophys. Res. Commun. 193:905 (1993).

    CAS  PubMed  Google Scholar 

  33. J.G. Bergan and H.H. Draper, Absorption and metabolism of 1-14C-hydroxy octadecadienoate in the rat, Lipids 5:983 (1970).

    Google Scholar 

  34. G. Yang, J. Chen, Z. Wen, K. Ge, L. Zhu, X. Chen, and X. Chen, The Role of selenium in Keshan disease, Adv. Nutr. Res. 6:203 (1984).

    CAS  PubMed  Google Scholar 

  35. C.D. Thompson and M.F. Jones, Selenium in human health and disease with emphasis on those aspects peculiar to New Zealand, Amer. J. Clin. Nutr. 33:303 (1980).

    Google Scholar 

  36. G. Yang, S. Wang, R. Zhou, and S. Sun, Endemic selenium intoxication of humans in China, Amer. J. Clin. Nutr. 37:872 (1983).

    CAS  PubMed  Google Scholar 

  37. J.N. Thompson, P. Erdody, and D.C. Smith, Selenium content of food consumed by Canadians,. J. Nutr. 105:214 (1975).

    Google Scholar 

  38. A.V. Kozlov, D.Y. Yegorow, Y.A. Vladimirov, and O.A. Azizova, Intracellular free iron in liver tissue and liver homogenate: studies with electron paramagnetic resonance on the formation of paramagnetic complexes with desferal and nitric oxide, Free Rad. Biol. Med. 13:9 (1992).

    CAS  PubMed  Google Scholar 

  39. H.H. Draper, E.J. Squires, H. Mahmoodi, J. Wu, and M. Hadley, A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials, Free Rad. Biol. Med. 15:353 (1993).

    CAS  PubMed  Google Scholar 

  40. L.A. Witting, Lipid peroxidation in vivo, J. Amer. Oil Chem. 42:908 (1965).

    CAS  Google Scholar 

  41. T. Miyazawa, T. Suzuki, and K. Fujimoto, Age-dependent accumulation of phosphatidyl hydroperoxide in the brain and liver of the rat, Lipids 28:789 (1993).

    CAS  PubMed  Google Scholar 

  42. H.H. Draper, Antioxidant role of vitamin E, in: Atmospheric Oxidation and Antioxidants, Vol. III, G. Scott, ed., Elsevier, Amsterdam (1993).

    Google Scholar 

  43. W.A. Pryor and S.S. Godber, Noninvasive measures of oxidative stress status in humans, Free Rad. Biol. Med. 10:177 (1991).

    CAS  PubMed  Google Scholar 

  44. K.N. Jeejeebhoy, In vivo breath alkane as an index of lipid peroxidation, Free Rad. Biol. Med. 10:191 (1991).

    CAS  PubMed  Google Scholar 

  45. L.A. Piché, P.D. Cole, M. Hadley, R. van den Bergh, and H.H. Draper, Identification of N-ε-(2-propenal)lysine as the main form of malondialdehyde in food digesta, Carcinogenesis 9:473 (1988).

    PubMed  Google Scholar 

  46. S.N. Danakoti and H.H. Draper, Response of urinary malondialdehyde to factors that stimulate lipid peroxidation in vivo, Lipids 22:643 (1987).

    Google Scholar 

  47. K.J.A. Davies and A.L. Goldberg, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262:8227 (1987).

    CAS  PubMed  Google Scholar 

  48. H.H. Draper and M. Hadley, A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde, Xenobiotics 20:901 (1990).

    CAS  Google Scholar 

  49. S. Agarwal and H.H. Draper, Isolation of a malondialdehyde-deoxyguanosine adduct from rat liver DNA, Free Rad. Biol. Med. 13:695 (1992).

    CAS  PubMed  Google Scholar 

  50. R. Adelman, R.L. Saul, and B.N. Ames, Oxidative damage to DNA: relation to species metabolic rate and life span, Proc. Natl. Acad. Sci. USA 85:2706 (1988).

    CAS  PubMed  Google Scholar 

  51. M.E. Haberland, D. Fong, and L. Cheng, Malondialdehyde, modified lipoproteins, and atherosclerosis, Europ. Heart. J. 11 (Suppl. E): 100 (1990).

    CAS  Google Scholar 

  52. H. Esterbauer, Cytotoxicity and genotoxicity of lipid-oxidation products, Amer. J. Clin. Nutr. 57:(Suppl):7795 (1993).

    Google Scholar 

  53. C.C. Seltzer, Letter to the editor, New Engl. J. Med. 323:1705 (1990).

    Google Scholar 

  54. J.D. Morrow, K.E. Hill, R.F. Burk, T.M. Nammour, K.F. Badr, and L.J. Roberts, II, A series of prostaglandin F2-like compounds are produced in vivo in humans by a noncyclooxygenase, free radical-catalyzed mechanism, Proc. Natl. Acad. Sci. USA 87:9383 (1990).

    CAS  PubMed  Google Scholar 

  55. M. Meydani, F. Natiello, B. Goldin, N. Free, M. Woods, E. Schaefer, J.B. Blumberg, and S.L. Gorbach, Effect of long-term fish oil supplementation on vitamin E status and lipid peroxidation in women,. J. Nutr. 121:484 (1991).

    CAS  PubMed  Google Scholar 

  56. H.J. Kayden and M.G. Traber, Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans,. J. Lipid Res. 34:343 (1993).

    CAS  PubMed  Google Scholar 

  57. M.K. Horwitt, Vitamin E and lipid metabolism in man, Amer. J. Clin.Nutr. 8:451 (1960).

    CAS  PubMed  Google Scholar 

  58. M.J. Stampfer, C.H. Hennekens, J.E. Manson, G.A. Colditz, B. Rosner, and W.C. Willett, Vitamin E consumption and the risk of coronary disease in women, New Engl. J. Med. 328:1444 (1993).

    CAS  PubMed  Google Scholar 

  59. D.J. Hunter, J.E. Manson, G.A. Colditz, M.J. Stampfer, B. Rosner, C.H. Hennekens, F.E. Speizer, and W.C. Willett, A prospective study of the intake of vitamins C, E and A and the risk of breast cancer, New Engl. J. Med. 329: 234 (1993).

    CAS  PubMed  Google Scholar 

  60. E.B. Rim, M.J. Stampfer, A. Ascherio, E. Giovannucci, G.A. Colditz, and W.C. Willett, Vitamin E consumption and the risk of coronary heart disease in men, New Engl J. Med. 328:1450 (1993).

    Google Scholar 

  61. H.H. Draper, Nutrient interrelationships, in: “Vitamin E. A Comprehensive Treatise”, L.J. Machlin, ed., Marceli Dekker, New York (1980).

    Google Scholar 

  62. J.P. Kehrer, Free radicals as mediators of tissue inury and disease, Critical Rev. Toxicol. 23:21 (1993).

    CAS  Google Scholar 

  63. C.A. Rice-Evans and A.T. Diplock, Current status of antioxidant therapy, Free Rad. Biol. Med. 15:77 (1993).

    CAS  PubMed  Google Scholar 

  64. T. Tihan, P. Chiba, O. Krupicka, M. Fritzer, R. Seitelbergen, and M.M. Muller, Serum lipid peroxide levels in the course of coronary by-pass surgery, Eur. J. Clin. Chem. Clin. Biochem. 30:205 (1992).

    CAS  PubMed  Google Scholar 

  65. Z.W. Weitz, A.J. Birnbaum, P.A. Sobolka, E.J. Starling, and J.L. Skosey, High breath pentane concentrations during acute myocardial infarction, Lancet 337:933 (1991).

    CAS  PubMed  Google Scholar 

  66. P.A. Sobolka, M.D. Brottman, Z. Weitz, A.J. Birnbaum, J. Skosey, and E.J. Zarling, Elevated breath pentane in heart failure reduced by free radical scavenger, Free Rad. Biol. Med. 14:643 (1993).

    Google Scholar 

  67. D.L. Gee and R.E. Litov, Lipid peroxidation and antioxidant status in burn patients, Amer. J. Clin. Nutr. 31:P–31 (1991).

    Google Scholar 

  68. Y.-K. Youn, C. Lalonde, and R. Demling, Oxidants and the pathophysiology of burn and smoke inhalation injury, Free Rad. Biol. Med. 12:409 (1992).

    CAS  Google Scholar 

  69. H.M. Berger, J.H.N. Lindeman, D. van Zoeren-Grobben, E. Houdkamp, J. Schrijver, and H.H. Kanhai, Iron overload, free radical damage, and rhesus haemolytic disease, Lancet 335:933 (1990).

    CAS  PubMed  Google Scholar 

  70. I.S. Young, T.G. Trouton, J.J. Forney, D. McMaster, M.E. Callender, and E. Trimble, Antioxidant status and lipid peroxidation in hereditary haemochromatosis, Free Rad. Biol. Med. 16:393 (1994).

    CAS  PubMed  Google Scholar 

  71. H.H. Draper, L. Polensek, M. Hadley, and L.G. McGirr, Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues, Lipids 19:836 (1984).

    CAS  PubMed  Google Scholar 

  72. G. Paolisse, A. D’Amote, D. Giuliano, A. Ceriello, M. Varrichio, and F. D’Onofrio, Pharmacological doses of vitamin E improve insulin action in healthy subjects and non-insulin-dependent diabetic patients, Amer. J. Clin. Nutr. 57:650 (1993).

    Google Scholar 

  73. A.B. Baouali, H. Aube, V. Maupoil, B. Blettery, and L. Rochette, Plasma lipid peroxidation in critically ill patients: importance of mechanical ventilation, Free Rad. Biol. Med. 16:223 (1994).

    PubMed  Google Scholar 

  74. W.A. Pryor, Can vitamin E protect humans against the pathological effects of ozone in smog?, Amer. J. Clin. Nutr. 53:702 (1991).

    CAS  PubMed  Google Scholar 

  75. C.K. Chow, C.G. Plopper, and D.L. Dungworth, Influence of dietary vitamin E on the lungs of ozone-exposed rats, Envir. Res. 20:309 (1977).

    Google Scholar 

  76. S. Owen, D. Pearson, V. Suarez-Mendez, R. O’Driscoll, and A. Woodcock, Evidence of free radical action in asthma, New Engl. J. Med. 325:586 (1991).

    CAS  PubMed  Google Scholar 

  77. M.M. Mathews-Roth, Beta carotene therapy for erythropoietic protoporphyria and other photosensitivity diseases, Biochimie 68:875 (1986).

    CAS  PubMed  Google Scholar 

  78. G.W. Burton and K.V. Ingoici, Beta carotene: an unusual type of lipid antioxidant, Science 224: 569 (1984).

    CAS  PubMed  Google Scholar 

  79. B.A. Underwood, The diet-cancer conundrum, Public Health Rev. 14:191 (1986).

    CAS  PubMed  Google Scholar 

  80. J.A. Olson, Carotenoids, vitamin A and cancer, J. Nutr. 116:1127 (1986).

    CAS  PubMed  Google Scholar 

  81. C. La Vecchia, S. Franceschi, A. Decarli, A. Gentile, M. Fasoli, S. Pampailona, and G. Tognoni, Dietary vitamin A and the risk of invasive cervical cancer, Int. J. Cancer 34:319 (1984).

    PubMed  Google Scholar 

  82. K. Katsouyami, W. Willett, D. Trichopoulos, P. Boyle, A. Trichopoulu, S. Vasilaros, J. Papadiamantis, and B. MacMahon, Risk of breast cancer among Greek women in relation to nutrient intake, Cancer 61:181 (1988).

    Google Scholar 

  83. K. Gottlieb, E.J. Zarling, S. Mobarhan, P. Bowen, and S. Sugerman, β-carotene decreases markers of lipid peroxidation in healthy volunteers, Nutr. Cancer 19:207 (1993).

    CAS  PubMed  Google Scholar 

  84. J.M.W. Slack, We have a morphogen!, Nature 327:553 (1987).

    CAS  PubMed  Google Scholar 

  85. M.B. Sporn and A.B. Roberts, Role of retinoids in differentiation and carcinogenesis, Cancer Res. 43:3034 (1983).

    CAS  PubMed  Google Scholar 

  86. J. Brockes, We may not have a morphogen, Nature 350:15 (1991).

    CAS  PubMed  Google Scholar 

  87. G. Kolata, Does vitamin A prevent cancer?, Science 233:1161 (1984).

    Google Scholar 

  88. J.C. Bauernfeind, “The Safe Use of Vitamin A”, International Vitamin A Consultative Group, The Nutrition Foundation, Washington, D.C. (1980).

    Google Scholar 

  89. F.W. Rosa, A.L. Wilk, and F.O. Kelsey, Teratogen update: vitamin A congeners, Teratology 33:355 (1986).

    CAS  PubMed  Google Scholar 

  90. R.C. Rose and A.M. Bode, Biology of free radical scavengers: an evaluation of ascorbate, FASEB J. 7:1135 (1993).

    CAS  PubMed  Google Scholar 

  91. B. Frei, R. Stocker, and B.N. Ames, Antioxidant defenses and lipid peroxidation in human blood plasma, Proc. Natl. Acad. Sci. USA 85:9748 (1988).

    CAS  PubMed  Google Scholar 

  92. A.B. Kallner, D. Harbmann, and D.H. Hornig, On the requirements of ascorbic acid in man: steady state turnover and body pool in smokers, Amer. J. Clin. Nutr. 34:1347 (1981).

    CAS  PubMed  Google Scholar 

  93. A.C. Chan, K. Tran, T. Raynor, P.R. Ganz, and C.K. Chow, Regeneration of vitamin E in human platelets,. J. Biol. Chenu 266:17290 (1991).

    CAS  Google Scholar 

  94. G.W. Burton, U. Wronska, L. Stone, D.O. Foster, and K.U. Ingold, Biokinetics of dietary RRR-a-tocopherol in the male guinea pig at three dietary levels of vitamin C and two levels of vitamin E. Evidence that vitamin C does not “spare” vitamin E in vivo, Lipids 25:199 (1990).

    CAS  PubMed  Google Scholar 

  95. L. Chen, An increase in vitamin E requirement induced by high supplementation of vitamin C in rats, Amer. J. Clin. Nutr. 34:1036 (1981).

    CAS  PubMed  Google Scholar 

  96. W.A. Behrens and R. Madère, Ascorbic and dehydroascorbic acid status in rats fed diets varying in vitamin E levels, intern. J. Vit. Nutr. Res. 59:360 (1989).

    CAS  Google Scholar 

  97. S. England and S. Seifter, The biochemical functions of ascorbic acid, Ann. Rev. Nutr. 6:365 (1986).

    Google Scholar 

  98. T.M. Bray and C.G. Taylor, Enhancement of tissue glutathione for antioxidant and immune functions in malnutrition, Biochem. Pharmacol. (in press).

    Google Scholar 

  99. C. Huang and M. Fwu, Degree of protein deficiency affects the extent of depression of the antioxidative enzyme activities and the enhancement of tissue lipid peroxidation in rats, J. Nutr. 123:803 (1993).

    CAS  PubMed  Google Scholar 

  100. C.C. Winterbourne, Superoxide as an intracellular radical sink, Free Rad. Biol. Med. 14:85 (1993).

    Google Scholar 

  101. T.M. Bray and C.G. Taylor, Tissue glutathione, nutrition and oxidative stress, Can. J. Physiol. Pharmacol. 71:746 (1993).

    CAS  PubMed  Google Scholar 

  102. M.G.L. Hertog, E.J.M. Feskens, P.C.H. Hollman, M.B. Katan and D. Kromhout, Dietary antioxidant flavanoids and risk of coronary heart disease: the Zutphen elderlystudy, Lancet 342:1007 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Draper, H.H., Bettger, W.J. (1994). Role of Nutrients in the Cause and Prevention of Oxygen Radical Pathology. In: Armstrong, D. (eds) Free Radicals in Diagnostic Medicine. Advances in Experimental Medicine and Biology, vol 366. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1833-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1833-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5742-1

  • Online ISBN: 978-1-4615-1833-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics