Skip to main content

Induction of Long-Term Modulation of the Exercise Ventilatory Response in Man

  • Chapter
Frontiers in Modeling and Control of Breathing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 499))

Abstract

Current views on the control of ventilation include not only the classical reflexogenic mechanisms of afferent feedback, both chemical and neurogenic, but also “feedforward” input from higher centres in the brain, commonly termed central command1. Even so, it is apparent that there is still a failure to account for exercise ventilation, when there would appear to be no error signal to regulate breathing2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Whipp, S.A. Ward, Determinants and control of breathing during muscular exercise. Br J Sports Med 32: 199–211 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. G.G. Somjen, The missing error signal - regulation beyond negative feedback. NIPS 7: 184–185 (1992).

    Google Scholar 

  3. F. L. Eldridge and P. Gill-Kumar, Central neural respiratory drive and afterdischarge. Respir. Physiol. 40: 49–63 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. G.D. Swanson, D.S. Ward and J. W. Bellville, Posthyperventilation isocapnic hyperpnea. J. Appl. Physiol 40: 592–596 (1976).

    PubMed  CAS  Google Scholar 

  5. R.F. Fregosi, Short-term potentiation of breathing in humans. J.Appl. Physiol 73: 892–899 (1991).

    Google Scholar 

  6. F.L. Eldridge and T.G. Waldrop, Neural control of breathing during exercise. In: Exercise, Pulmonary Physiology and Pathophysiology. New York, Dekker, pp 309–370 (1991).

    Google Scholar 

  7. G.S. Mitchell, K. Foley, S. McGuirk, B.D. Selby, S.L. Schaefer and K.J. Lange, Effects of chronic thoracic dorsal rhizotomy (TDR) on ventilatory control during mild exercise in goats. FASEB J 2: A1508 (1988).

    Google Scholar 

  8. G.S. Mitchell, M.A. Douse and K.T. Foley, Receptor interactions in modulating ventilatory activity. American Journal of Physiology 259 : 911–920 (1990).

    Google Scholar 

  9. P.A. Martin and G.S. Mitchell, Long-term Modulation of the exercise Ventilatory Response in Goats. J. Physiol. 470: 601–617 (1993).

    PubMed  CAS  Google Scholar 

  10. J. Gallego and P. Perruchet, Classical conditioning of ventilatory responses in humans. J Appl Physiol; 70: 676–682 (1991).

    PubMed  CAS  Google Scholar 

  11. D.L. Turner, J.R. Greenwell, H. Lawrence, P. Lyons, M.R. Taylor and Z.M. Iqbal, Long term modulation of ventilatory control in exercising humans. Soc. Neurosci. Abstracts 22: 1602 (1996).

    Google Scholar 

  12. D.L. Turner, K.B. Bach, P.A. Martin, E.B. Olsen, M. Brownfield, K.T. Foley and G.S. Mitchell, Modulation of ventilatory control during exercise. Respiration Physiology 110: 277–285 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. J.C. Houk, Control strategies in physiological systems. FASEB J. 2: 97–107 (1988).

    PubMed  CAS  Google Scholar 

  14. J.A. Dempsey, H.V. Forster and D.M. Ainsworth, Regulation of hyperpncea, hyperventilation, and respiratory muscle recruitment during exercise. In: Dempsey JA, Pack AI, eds. Regulation of Breathing 2nd edition, Lung Biology in Health and Disease, New York, Marcel Dekker, pp1065–1133 (1995).

    Google Scholar 

  15. L. Adams, S. Moosavi, A. Guz, Ventilatory response to exercise in man increases by prior conditioning of breathing with added deadspace. Amer. Rev. Resp. Disease 145: A882 (1992).

    Google Scholar 

  16. A.J. Cathcart, N. Herrold, A.P. Turner, J. Wilson and S.A. Ward, Absence of long-term modulation in response to external dead space loading during moderate exercise in humans. J Physiol 528P:44P (2000).

    Google Scholar 

  17. J. Kohl, E.A. Koller, M. Brandenberger, M. Cardenas and U. Boutellier, Effect of exercise-induced hyperventilation on airway resistance and cycling endurance. EurJAppl Physiol 75: 305–311 (1997).

    CAS  Google Scholar 

  18. C.S. Poon, Self-tuning optimal regulation of respiratory motor output by Hebbian covariance learning Neural Networks 9: 1367–1383 (1996).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reed, J.W., Coates, J.C. (2001). Induction of Long-Term Modulation of the Exercise Ventilatory Response in Man. In: Poon, CS., Kazemi, H. (eds) Frontiers in Modeling and Control of Breathing. Advances in Experimental Medicine and Biology, vol 499. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1375-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1375-9_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5522-9

  • Online ISBN: 978-1-4615-1375-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics