Skip to main content
  • 2889 Accesses

Abstract

The widespread use of FROG has contributed significantly to the development of optimized ultrafast lasers producing transform-limited pulses of near single-cycle duration. However, although the characterization of optimized ultrafast sources is certainly one of its most important applications, a significant number of experiments have also used FROG to characterize pulses very far from the transform limit. The pulses being studied in these experiments have possessed very complex intensity and/or phase distortions, but FROG has still been successfully used for complete characterization. This chapter will review these previous experiments and discuss, where relevant, important experimental issues necessary for accurate results to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. P. Agrawal, Nonlinear fiber optics, 2nd ed. (Academic, New York, 1995).

    Google Scholar 

  2. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, R. Leonhardt, P. D. Drummond: Direct measurement of pulse distortion near the zero-dispersion wavelength in an optical fiber by frequency-resolved optical gating, Opt. Lett. 22, 457–9 (1997).

    Article  ADS  Google Scholar 

  3. A. Baltuška, M. S. Pshenichnikov, D. A. Wiersma: Second-harmonic generation frequency-resolved optical gating in the single-cycle regime, IEEE J. Q. Electron. 35, 459–78 (1999).

    Article  ADS  Google Scholar 

  4. K. W DeLong, R. Trebino: Improved ultrashort phase-retrieval algorithm for frequency-resolved optical gating, J. Opt. Soc. Amer. A, 11, 2429–37 (1994).

    Article  ADS  Google Scholar 

  5. D. J. Kane, G. Rodriguez, A. J. Taylor, T. Sharp Clement: Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot, J. Opt. Soc. Amer. B, 14, 935–43 (1997).

    Article  ADS  Google Scholar 

  6. D.J. Kane: Recent progress toward real-time measurement of ultrashort laser pulses, IEEE J. Quantum Electron., 35, 421–31 (1999).

    Article  ADS  Google Scholar 

  7. F. Gutty, S. Pitois, P. Grelu, G. Millot, M. D. Thomson, J. M. Dudley: Generation and characterization of 0.6–THz polarization domain-wall trains in an ultralow-birefringence spun fiber, Opt. Lett., 24, 1389–91 (1999).

    Article  ADS  Google Scholar 

  8. J. M. Dudley, M. D. Thomson, F. Gutty, S. Pitois, P. Grelu, G. Millot: Complete intensity and phase characterization of optical pulse trains at terahertz repetition rates, Electron. Lett., 35, 2042–4 (1999).

    Article  Google Scholar 

  9. J. M. Dudley, S. M. Boussen, D. M. J. Cameron, J. D. Harvey: Complete Characterization of a Self-Modelocked Ti:Sapphire Laser in the vicinity of zero group-delay dispersion, Appl. Opt. 38, 3308–15 (1999).

    Article  ADS  Google Scholar 

  10. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Operation of a femtosecond Ti:Sapphire solitary laser in the vicinity of zero group-delay dispersion, Opt. Lett. 18, 54–6 (1993).

    Article  ADS  Google Scholar 

  11. B. Proctor, E. Westwig, F. Wise, Characterization of a Kerr-lens modelocked Ti:Sapphire laser with positive group velocity dispersion, Opt. Lett. 18, 1654–6 (1993).

    Article  ADS  Google Scholar 

  12. A. Kasper and K. J. Witte, Contrast and phase of ultrashort laser pulses fro Ti:Sapphire ring and Fabry-Perot resonators based on chirped mirrors, J. Opt. Soc. Am. B 15, 2490–5 (1998).

    Article  ADS  Google Scholar 

  13. To emphasize this, the wavelength direction in Fig. 5 has been reversed compared to that in Fig. 2. The opposite symmetry in the structure of the FROG traces is attributed to the different signs of the third order dispersion.

    Google Scholar 

  14. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, J. D. Harvey: Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers, Phys. Rev. Lett. 84, 6010–13 (2000).

    Article  ADS  Google Scholar 

  15. C. W. Siders, J. L. W. Siders, F. G. Omenetto, A. J. Taylor: Multipulse interferometric frequency-resolved optical gating, IEEE J. Quant. Electron. 35, 432–40 (1999).

    Article  ADS  Google Scholar 

  16. P. J. Delfyett, H. Shi, S. Gee, I. Nitta, J. C. Connolly, G. A. Alphonse: Joint time-frequency measurements of mode-locked semiconductor diode lasers and dynamics using frequency-resolved optical gating, IEEE J. Quant. Electron. 35 487–500 (1999).

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dudley, J.M. (2000). FROG Characterization of Pulses with Complex Intensity and Phase Substructure. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics