Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 512))

Abstract

Infection with viruses and bacteria generally results in robust induction of the innate immune response followed by the generation of an antigen-specific adaptive immune response comprised of CD4 and CD8 T cells and B cells. Thus, there are multiple cellular players in the induction of the response and although our knowledge has increased dramatically in recent years, there is much to learn regarding the complex interplay of the various cell types necessary in mounting a productive, and potentially protective, immune response. Long-term protection following infection or vaccination is mediated by memory T and B cells, as well as by circulating neutralizing antibody. The molecular and cellular requirements for generation and maintenance of immunological memory are largely unknown, although recent studies have begun to yield some intriguing clues in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. C. Butcher, M. Williams, K. Youngman, L. Rott, and M. Briskin, Lymphocyte trafficking and regional immunity, Adv. Immunol. 72,209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. K. Murali-Krishna, J. D. Altman, M. Suresh, D. J. Sourdive, A. J. Zajac, J. D. Miller, J. Slansky, and R. Ahmed, Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection, Immunity 8,177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. E. A. Butz and M. J. Bevan, Massive expansion of antigen-specific CD8+ T cells during an acute virus infection, Immunity 8,167–175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. K. Kim, K. S. Schluns, and L. Lefrançois, Induction and visualization of mucosal memory CD8 T cells following systemic virus infection, J. Immunol. 163,4125–4132 (1999).

    CAS  PubMed  Google Scholar 

  5. D. Masopust, V. Vezys, A. L. Marzo, and L. Lefrançois, Preferential localization of effector memory cells in nonlymphoid tissue, Science 291,2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. R. L. Reinhardt, A. Khoruts, R. Merica, T. Zell, and M. K. Jenkins, Visualizing the generation of memory CD4 T cells in the whole body, Nature 410,101–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. R. Ishimitsu, H. Nishimura, T. Yajima, T. Watase, H. Kawauchi, and Y. Yoshikai, Overexpression of IL-15 in vivo enhances Tc I response, which inhibits allergic inflammation in a murine model of asthma, J. Immunol. 166,1991–2001 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. L. Lefrançois, S. Olson, and D. Masopust, A critical role for CD40–CD40ligand interactions in amplification of the mucosal CD8 T cell response, J. Exp. Med. 190,1275–1284 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  9. C. Zimmermann, K. Brduscha-Riem, C. Blaser, R. M. Zinkemagel, and H. Pircher, Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts., J. Exp. Med. 183,1367–1375 (1996).

    Article  CAS  Google Scholar 

  10. P. C. Doherty, D. J. Topham, and R. A. Tripp, Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory., Immunol. Rev. 150:23–44,23–44 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. R. Ahmed and D. Gray, Immunological memory and protective immunity: understanding their relation., Science 272,54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. M. Lenardo, K. M. Chan, F. Hornung, H. McFarland, R. Siegel, J. Wang, and L. Zheng, Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment, Annu. Rev. Immunol. 17,221–253 (1999).

    Google Scholar 

  13. J. Sprent and C. D. Surh, Generation and maintenance of memory T cells, Curr. Opin. Immunol. 13,248–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. K. J. Flynn, J. M. Riberdy, J. P. Christensen, J. D. Altman, and P. C. Doherty, In vivo proliferation of naive and memory influenza-specific CD8(+) T cells., Proc. Natl. Acad. Sci. USA 96,8597–8602 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. R. W. Dutton, L. M. Bradley, and S. L. Swain, T cell memory., Annu. Rev. Immunol. 16,201–223 (1998).

    Article  CAS  Google Scholar 

  16. J. T. Opferman, B. T. Ober, and P. G. Ashton-Rickardt, Linear differentiation of cytotoxic effectors into memory T lymphocytes, Science 283,1745–1748 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. S. M. Kaech and R. Ahmed, Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells, Nat. Immunol 2,415–422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Ehl, P. Klenerman, P. Aichele, H. Hengartner, and R. M. Zinkemagel, A functional and kinetic comparison of antiviral effector and memory cytotoxic T lymphocyte populations in vivo and in vitro, Eur. J. Immunol 27,3404–3413 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. M. J. Van Stipdonk, E. E. Lemmens, and S. P. Schoenberger, Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation, Nat. Immunol 2,423–429 (2001).

    CAS  Google Scholar 

  20. N. Manjunath, P. Shankar, J. Wan, W. Weninger, M. A. Crowley, K. Hieshima, T. A. Springer, X. Fan, H. Shen, J. Lieberman, and U. H. von Andrian, Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes, J. Clin. Invest 108,871–878 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. Sprent and D. F. Tough, T cell death and memory, Science 293,245–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. D. Masopust, J. Jiang, H. Shen, and L. Lefrançois, Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection, J. Immunol. 166,2348–2356 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. D. H. Busch, I. M. Pilip, S. Vijh, and E. G. Pamer, Coordinate regulation of complex T cell populations responding to bacterial infection, Immunity 8,353–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. J. D. Altman, P. A. H. Moss, P. J. R. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis, Phenotypic analysis of antigen-specific T lymphocytes, Science 274,94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. J. J. Peschon, P. J. Morrissey, K. H. Grabstein, F. J. Ramsdell, E. Maraskovsky, B. C. Gliniak, L. S. Park, S. F. Ziegler, D. E. Williams, C. B. Ware, J. D. Meyer, and B. L. Davison, Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice, J. Exp. Med. 180,1955–1960 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. K. A. Hogquist, S. C. Jameson, W. R. Heath, J. L. Howard, M. J. Bevan, and F. R. Carbone, T cell receptor antagonistic peptides induce positive selection., Cell 76,17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. K. Laky, L. Lefrançois, and L. Puddington, Age-dependent intestinal lymphoproliferative disorder due to stem cell factor receptor deficiency: parameters in small and large intestine., J. Immunol. 158,1417–1427 (1997).

    CAS  PubMed  Google Scholar 

  28. J. W. Yewdell, J. R. Bennink, M. Mackett, L. Lefrançois, D. S. Lyles, and B. Moss, Recognition of cloned vesicular stomatitis virus internal and external gene products by cytotoxic T lymphocytes, J. Exp. Med. 163,1529–1538 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. S. K. Kim, D. S. Reed, S. Olson, M. J. Schnell, J. K. Rose, P. A. Morton, and L. Lefrançois, Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals., Proc. Natl. Acad. Sci. USA 95,10814–10819 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. G. M. Van Bleek and S. G. Nathenson, Isolation of an endogenously processed immunodominant viral peptide from the class I H-2K“ molecule, Nature 348,213–216 (1990).

    Article  Google Scholar 

  31. H. Shen, M. K. Slifka, M. Matloubian, E. R. Jensen, R. Ahmed, and J. F. Miller, Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity, Proc Natl Acad Sci USA 92,3987–3991 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H. Shen, J. F. Miller, X. Fan, D. Kolwyck, R. Ahmed, and J. T. Harty, Compartmentalization of bacterial antigens - differential effects on priming of CD8 T cells and protective immunity, Cell 92,535–545 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. D. R. Marshall, S. J. Turner, G. T. Bela, S. Wingo, S. Andreansky, M. Y. Sangster, J. M. Riberdy, T. Liu, M. Tan, and P. C. Doherty, Measuring the diaspora for virus-specific CD8+ T cells, Proc. Natl. Acad. Sci. U. S. A (2001). 708–712

    Google Scholar 

  34. F. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments], Nature 401,708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. U. von Freeden-Jeffry, P. Vieira, L. A. Lucian, T. McNeil, S. E. G. Burdach, and R. Murray, Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine, J. Exp. Med. 181,1519–1526 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. N. B. Perumal, T. W. Kenniston Jr., D. J. Tweardy, K. F. Dyer, R. Hoffman, J. Peschon, and P. M. Appasamy, TCR-g Genes Are Rearranged but Not Transcribed in IL-7Ra-Deficient Mice., Journal of Immunology 158,5744–5750 (1997).

    CAS  Google Scholar 

  37. E. Maraskovsky, M. Teepe, P. J. Morrissey, S. Braddy, R. E. Miller, D. H. Lynch, and J. J. Peschon, Impaired survival and proliferation in IL-7 receptor-deficient peripheral T cells, J. Immunol. 157,5315–5323 (1996).

    CAS  PubMed  Google Scholar 

  38. J. Hassan and D. J. Reen, IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells, EurJ Immunol 28,3057–3655 (1998).

    Article  CAS  Google Scholar 

  39. K. S. Schluns, W. C. Kieper, S. C. Jameson, and L. Lefrançois, Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo, Nat. Immunol. 1,426–432 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lefrançois, L., Marzo, A., Masopust, D., Schluns, K., Vezys, V. (2002). Migration of Primary and Memory Cd8 T Cells. In: Gupta, S., Butcher, E., Paul, W. (eds) Lymphocyte Activation and Immune Regulation IX. Advances in Experimental Medicine and Biology, vol 512. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0757-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0757-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5226-6

  • Online ISBN: 978-1-4615-0757-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics