Skip to main content

Things We Know and Do Not Know About Motoneurones

  • Chapter
Sensorimotor Control of Movement and Posture

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 508))

Abstract

An introductory survey is given of the cellular physiology of motoneurones (MNs). Steady driving currents, applied to individual cells through microelectrodes, may be used for determining such key parameters as the range of possible discharge rates and the shape and steepness of the curve relating discharge frequency to current intensity (f-I relation). Quantitatively, MN properties may vary considerably between animal species and between cells innervating different types of muscle fibres. Central synapses impinging upon MNs often simply provide “driving” currents, altering MN discharge rate largely in accordance with the f-I relation. In addition, metabotropic synapses may have “MN-modifying” effects, altering MN membrane and activation properties in various ways. Studies of MN firing and response patterns in normal and pathological motor behaviour is essential for evaluating the functional role of short-and long-term modifications of MN properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bennett, D. J., Hultborn, H., Fedirchuk, B., and Gorassini, M., 1998, Synaptic activation of plateaus in hindlimb motoneurons of decerebrate catsJournal of Neurophysiology80, 2023–2037.

    PubMed  CAS  Google Scholar 

  • Berger, A. J., Bayliss, D. A., and Viana, F., 1996, Development of hypoglossal motoneuronsJournal of Applied Physiology81, 1039–1048.

    PubMed  CAS  Google Scholar 

  • Binder, M. D., Heckman, C. J., and Powers, R. K., 1996, The physiological control of motoneuron activity, in:Handbook of Physiology. Exercise. Regulation and Integration of Multiple SystemsAmerican Physiological Society, New York, pp. 3–53.

    Google Scholar 

  • Carlin, K. P., Jones, K. E., Jiang, Z., Jordan, L. M., and Brownstone, R. M., 2000, Dendritic L-type calcium currents in mouse spinal motoneurons: implications for bistabilityEuropean Journal of Neuroscience12, 1635–1646.

    Article  PubMed  CAS  Google Scholar 

  • Conway, B. A., Hultborn, H., Kiehn, O., and Mintz, I., 1988, Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal catJournal of Physiology405, 369–384.

    PubMed  CAS  Google Scholar 

  • Copray, S., and Kemell, D., 2000, Neurotrophins and trk-receptors in adult rat spinal motoneurons: differences related to cell size but not to ‘slow/fast’ specialization,.NeuroscienceLetters289, 217–220.

    CAS  Google Scholar 

  • Czeh, G., Gallego, R., Kudo, N., and Kuno, M., 1978, Evidence for the maintenance of motoneurone properties by muscle activityJournal of Physiology281, 239–252.

    PubMed  CAS  Google Scholar 

  • Delgado-Lezama, R., and Hounsgaard, J., 1999, Adapting rnotoneurons for motor behaviorProgress in Brain Research123, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Lezama, R., Perrier, J. F., and Hounsgaard, J., 1999, Local facilitation of plateau potentials in dendrites of turtle motoneurones by synaptic activation of metabotropic receptorsJournal of Physiology515,203–207.

    Article  PubMed  CAS  Google Scholar 

  • Foehring, R. C., Sypert, G. W., and Munson, J. B., 1987, Motor-unit properties following cross-reinnervation of cat lateral gastrocnemius and soleus muscles with medial gastrocnemius nerve. II. Influence of muscle on motoneuronsJournal of Neurophysiology57, 1227–1245.

    PubMed  CAS  Google Scholar 

  • Gao, B. X., and Ziskind-Conhaim, L., 1998, Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneuronsJournal of Neurophysiology80, 3047–3061.

    PubMed  CAS  Google Scholar 

  • Gardiner, P. F., and Kernell, D., 1990, The fastness of rat motoneurones: time course of afterhyperpolarization in relation to axonal conduction velocity and muscle unit contractile speedPflügers Archives415, 762–766.

    Article  CAS  Google Scholar 

  • Gonzalez, M., and Collins, W. F., 3rd, 1997, Modulation of motoneuron excitability by brain-derived neurotrophic factorJournal of Neurophysiology77, 502–506.

    PubMed  CAS  Google Scholar 

  • Granit, R., Kemell, D., and Lamarre, Y., 1966, Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currentsJournal of Physiology187, 379–399.

    PubMed  CAS  Google Scholar 

  • Heckman, C. J., and Lee, R. H., 1999, Synaptic integration in bistable motoneuronsProgress in Brain Research123, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Heyer, C. B., and Llinas, R., 1977, Control of rhythmic firing in normal and axotomized cat spinal motoneuronsJournal of Neurophysiology40, 480–488.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., Hultbom, H., Jespersen, B., and Kiehn, O., 1988, Bistability of ‘alpha’-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophanJournal of Physiology405, 345–367.

    PubMed  CAS  Google Scholar 

  • Hounsgaard, J., and Kiehn, O., 1989, Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potentialJournal of Physiology414, 265–282.

    PubMed  CAS  Google Scholar 

  • Hultbom, H., 1999, Plateau potentials and their role in regulating motoneuronal firingProgress in Brain Research123, 39–48.

    Article  Google Scholar 

  • Jiang, Z., Rempel, J., Li, J., Sawchuk, M. A., Carlin, K. P., and Brownstone, R. M., 1999, Development of L-type calcium channels and a nifedipine-sensitive motor activity in the postnatal mouse spinal cordEuropean Journal of Neuroscience 113481–3487.

    Article  PubMed  CAS  Google Scholar 

  • Kernell, D., 1969, Synaptic conductance changes and the repetitive impulse discharge of spinal motoneuronesBrain Research15, 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Kemell, D., 1992, Organized variability in the neuromuscular system: A survey of task-related adaptationsArchives Italiennes de Biologie 13019–66.

    Google Scholar 

  • Kiehn, O., Erdal, J., Eken, T., and Bruhn, T., 1996, Selective depletion of spinal monoamines changes the rat coleus EMG from a tonic to a more phasic patternJournal of Physiology492, 173–184.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and Heckman, C. J., 1998, Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patternsJournal of Neurophysiology80, 572–582.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and Heckman, C. J., 2000, Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivoJournal of Neuroscience20, 6734–6740.

    PubMed  CAS  Google Scholar 

  • Lee, R. H., and Heckman, C. J., 2001, Essential role of a fast persistent inward current in action potential initiation and control of rhythmic firingJournal of Neurophysiology85, 472–475.

    PubMed  CAS  Google Scholar 

  • Martin-Caraballo, M., and Greer, J. J., 1999, Electrophysiological properties of rat phrenic motoneurons during perinatal developmentJournal of Neurophysiology81, 1365–1378.

    PubMed  CAS  Google Scholar 

  • Matthews, P. B., 1996, Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noiseJournal of Physiology492, 597–628.

    PubMed  CAS  Google Scholar 

  • Munson, J. B., Foehring, R. C., Mendell, L. M., and Gordon, T., 1997, Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. II. Motoneuron propertiesJournal of Neurophysiology77, 2605–2615.

    PubMed  CAS  Google Scholar 

  • Perrier, J. F., Noraberg, J., Simon, M., and Hounsgaard, J., 2000, Dedifferentiation of intrinsic response properties of motoneurons in organotypic cultures of the spinal cord of the adult turtleEuropean Journal of Neuroscience12, 2397–2404.

    Article  PubMed  CAS  Google Scholar 

  • Piotrkiewicz, M., Hausmanowa-Petrusewicz, L., and Mierzejewska, J., 1999, Motoneurons are altered in muscular dystrophyJournal de Physiologie93, 167–173.

    CAS  Google Scholar 

  • Powers, R. K., and Binder, M. D., 1995, Effective synaptic current and motoneuron firing rate modulationJournal of Neurophysiology74, 793–801.

    PubMed  CAS  Google Scholar 

  • Powers, R. K., and Binder, M. D., 2000a, Relationship between the time course of the afterhyperpolarization and discharge variability in cat spinal motoneuronesJournal of Physiology528, 131–150.

    Article  CAS  Google Scholar 

  • Powers, R. K., and Binder, M. D., 2000b, Summation of effective synaptic currents and firing rate modulation in cat spinal motoneuronsJournal of Neurophysiology83, 483–500.

    CAS  Google Scholar 

  • Powers, R. K., and Binder, M. D., 2001, Input-output functions of mammalian motoneuronsReviews in Physiology Biochemistry and Pharmacology143, 137–263.

    Article  CAS  Google Scholar 

  • Schwindt, P. C., and Crill, W. E., 1980, Properties of a persistent inward current in normal and TEA-injected motoneuronsJournal of Neurophysiology43, 1700–1724.

    PubMed  CAS  Google Scholar 

  • Van Dongen, P. A., Grillner, S., and Hokfelt, T., 1986, 5-Hydroxytryptamine (serotonin) causes a reduction in the afterhyperpolarization following the action potential in lamprey motoneurons and premotor intemeuronsBrain Research366, 320–325.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kernell, D. (2002). Things We Know and Do Not Know About Motoneurones. In: Gandevia, S.C., Proske, U., Stuart, D.G. (eds) Sensorimotor Control of Movement and Posture. Advances in Experimental Medicine and Biology, vol 508. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0713-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0713-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5206-8

  • Online ISBN: 978-1-4615-0713-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics