Skip to main content

Modeling Forest Productivity Using Data Acquired Through Remote Sensing

  • Chapter
Remote Sensing of Forest Environments

Abstract

The increased need for information on the growth of the worlds forests has led to a range of new approaches beyond traditional ground-based forest inventory surveys supplemented with aerial stereo-photography. The development of physiologically-based process models, which predict forest growth based on underlying physiological processes, and digital remote sensing in combination improve our ability to interpret and to predict forest growth patterns across landscapes. In this Chapter we review applications of these two rapidly maturing technologies. We cite selected examples of how data acquired through remote sensing have served to initialize, update, and validate models. From these studies we document improvements in our ability to assess, project, and track present and future forest growth patterns in changing environments across landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aber, J. D., & Federer, C. A. (1992). A generalized, lumped-parameter model for photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463–474.

    Article  Google Scholar 

  • Band, L. E. (1993). Effect of land surface representation on forest water and carbon budgets. Journal of Hydrology, 150, 749–772.

    Article  Google Scholar 

  • Begue, M. E. (1993). Leaf Area Index, intercepted photosynthetically active radiation, and spectral vegetation indices. A sensitivity analysis for regular clumped canopies. Remote Sensing of Environment, 46, 45–59.

    Article  Google Scholar 

  • Bergen, K. M., & Dobson, M. C.(1999). Integration of remotely sensed radar imagery in modeling and mapping of forest biomass and net primary production. Ecological Modeling, 122,257–274.

    Article  Google Scholar 

  • Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment, 55, 153–162.

    Article  Google Scholar 

  • Cohen, W. B., Harmon, M. E., Wallin, D. O., & Fiorella, M. (1996). Two decades of carbon flux from forests of the Pacific Northwest, BioScience, 46, 836–844.

    Article  Google Scholar 

  • Coops, N. C. (1999). Linking multi-resolution satellite-derived estimates of canopy photosynthetic capacity and meteorological data to assess forest productivity in a Pinus radiata (D. Don) stand. Photogrammetric Engineering and Remote Sensing, 65, 1149–1156.

    Google Scholar 

  • Coops, N. C, & Waring, R. H. (2001a). The use of multi-scale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sensing of Environment, 75, 324–334.

    Article  Google Scholar 

  • Coops, N. C, & Waring, R. H. (2001b). Estimating forest productivity in the eastern Siskiyou Mountains of southwestern Oregon using a satellite driven process model, 3-PGS. Canadian Journal of Forest Research, 31,143–154

    Article  Google Scholar 

  • Coops, N. C, Waring, R. H., & Landsberg, J. J. (1998). Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite derived estimates of canopy photosynthetic capacity. Forest Ecology and Management, 104, 113–127.

    Article  Google Scholar 

  • Dye, D. G., & Shibasaki, R. (1995). Intercomparison of global PAR data sets. Geophysical Research Letters, 22, 2013–2016.

    Article  Google Scholar 

  • Fassnacht, K. S., Gower, S. T., MacKenzie, M. D., Nordheim, E. V., & Lillesand, T. M. (1997). Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper. Remote Sensing of Environment, 61, 229–245.

    Article  Google Scholar 

  • Gessler, P. E, Moore, L D., McKenzie, N. J., & Ryan, P. J. (1995). Soil-landscape modeling and spatial prediction of soil attributes. InternationalJournal of Geographical Information Systems, 4, 421–432.

    Article  Google Scholar 

  • Goetz, S. J., Prince, S. D., Goward, S. N., Thawley, M. M., & Small, J. (1999). Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecological Modeling, 122, 239–255.

    Article  Google Scholar 

  • Goward, S. N., Waring, R. H., Dye, D. G., & Yang, J. (1994). Ecological remote sensing at OTTER: Satellite macroscale observations. Ecological Applications, 4, 322–343.

    Article  Google Scholar 

  • Gower, S. T., Kucharik, C. J. & Norman, J. (1999). Direct and indirect estimation of leaf area index, fAPAR and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70, 29–51.

    Article  Google Scholar 

  • Hann, W. J., Jones, J. L., Karl, M. G., Hessburg, P. F., Keane, R. E., Long, D. G., Menakis, J. P., McNicoll, C. H., Leonard, S. G., Gravenmier, R. A., & Smith, B. G. (1997). Landscape Dynamics of the Basin. Quigley, T. M. & Arbelbide, S. (Eds.). An Assessment of Ecosystem Components in the Interior Columbia Basin. Volume II. General Technical Report PNW-GTR-405. USDA Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Hutchinson, M. F. (1989). A new objective method for the spatial interpolation of meteorological variables from irregular networks applied to the estimation of monthly mean solar radiation, temperature, precipitation and windrun.  Fitzpatrick, E. A. & Kalma, J. D. (Eds.). Need for climatic and hydrological data in agriculture in Southeast Asia. Proceedings of United Nations University Workshop, 95–104. CSIRO Water Resources Technical Memorandum 89/5.

    Google Scholar 

  • Keane, R. E., Menakis, J. P., Long, D., Hann, W. J., & Bevins, C. (1996a). Simulating coarse scale vegetation dynamics using the Columbia River Basin Succession Model — CRBSUM. USDA Forest Service General Technical Report INT-GTR-340.

    Google Scholar 

  • Keane, R. E., Ryan, K. C, & Running, S. W. (1996b). Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC. Tree Physiology, 16,319–331.

    Article  Google Scholar 

  • Keane, R. E., Morgan, P., & White, J. D. (1999). Temporal patterns of ecosystem processes on simulated landscapes in Glacier National Park, Montana, USA. Landscape Ecology, 14, 311–329.

    Article  Google Scholar 

  • Kidwell, K. B. (1988). NOAA polar orbiter data TIROS-N, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10, NOAA-11 users guide. National Oceanic and Atmospheric Administration.

    Google Scholar 

  • Kimball, J. S., Keyser, A. R., Running, S. W., & Saatchi, S. S. (2000). Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps. Tree Physiology, 20, 761–775.

    Article  Google Scholar 

  • Kumar, M., & Monteith, J. L. (1982). Remote sensing of plant growth. Smith, H. (Ed.). Plants and the Daylight Spectrum, 133–144. Academic Press. London.

    Google Scholar 

  • Landsberg, J. J., & Coops, N. C. (1999). Modelling forest productivity across large areas and long periods. Natural Resource Modelling, 12, 1–28.

    Google Scholar 

  • Landsberg, J. J., & Gower, S. T. (1997). Applications of physiological ecology to forest management. Acad. Press, San Diego.

    Google Scholar 

  • Landsberg, J. J., & Waring, R. H. (1997). A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance, and partitioning. Forest Ecology and Management, 95, 209–22.

    Article  Google Scholar 

  • Lawrence, P. R., & Walker, B. B. (1954). Methods and results of forest assessment using random sampling units in photo-interpreted strata. Australian Forestry, 18,107–127.

    Google Scholar 

  • Leckie, D. G., Gillis, M. D., Gougeon, F., Lodin, M., Wakelin, J., & Yuan, X. (1999).   Computer-assisted photointerpretation aids to forest inventory mapping: some possible approaches. Hill, D. A. & Leckie, D. G., (Eds.). Proc. Int’l Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 335–343. February 10–12, 1998. Victoria, British Columbia, Canada. Natural Resources Canada, Canadian Forest Service, Victoria, B.C., Canada.

    Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52, 19–30.

    Article  Google Scholar 

  • Landsberg, J. J., Prince, S. D., Jarvis, P. G, McMurtrie, R. E, Luxmoore, R., & Medlyn, B. E. (1997). Energy conversion and use in forests: the analysis of forest production in terms of utilisation efficiency (É›). Gholz, H. L., Nakane, K., & Shimoda, H. (Eds.). The use of remote sensing in the modeling of forest productivity, 273–298. Kluwer Academic Publishers, Inc, Dordrecht.

    Chapter  Google Scholar 

  • Leuning, R., Kelliher, F. M., De Pury, D. G. G., & Schulze, E. D. (1995). Leaf nitrogen, photopsynthesis, conductance, and transpiration: scaling leaves to canopies. Plant, Cell, and Environment, 18, 1183–1200.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R.W. (1987). Remote Sensing and Image Interpretation, (2nd ed.). New York, John Wiley and Sons.

    Google Scholar 

  • Lindfors, V., Laurila, T., Hakola, H., Steinbrecher, R., & Rinne, J. (2000). Modeling speciated terpenoid emissions from the European boreal forest. Atmospheric Environment, 34,4983–4996.

    Article  Google Scholar 

  • Martin, M. E., & Aber, J. D. (1997). High spectral resolution remote sensing of forest canopy lignin, nitgogen and ecosystem process. Ecological Applications, 7, 431–443.

    Article  Google Scholar 

  • McKenzie, N. J., & Ryan, P. J. (1999). Spatial prediction of soil properties using environmental correlation. Geoderma, 89,67–94.

    Article  Google Scholar 

  • McMurtrie, R. E., Rook, D. A., & Kelliher, F. M. (1990). Modelling the yield of Pinus radiata on a site limited by water and nutrition. Forest Ecology and Management, 30, 381–413.

    Article  Google Scholar 

  • Mickler, R. A., Earnhardt, T. S. & Moore, J. A. (2002). Regional Estimation of current and future forest biomass. Environmental Pollution, 116, S7–S16.

    Article  Google Scholar 

  • Moulin, S., Bondeau, A., & DelScolle, R. (1998). Combining agricultural crop models and satellite observations: from field to regional scales. International Journal Remote Sensing, 19, 1021–1036.

    Article  Google Scholar 

  • National Forestry Inventory 1998. Australia’s State of the Forests Report 1998. Bureau of Rural Sciences, Canberra. Commonwealth of Australia.

    Google Scholar 

  • Nemani, R. R., & Running, S. W. (1989). Estimation of regional surface resistance to evapotranspiration from NDV1 and thermal — IR AVHRR data. Journal of Applied Meteorology, 28, 276–284.

    Article  Google Scholar 

  • Nemani, R., Pierce, L., Running, S., & Goward, S. (1993). Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology, 32, 548–557.

    Article  Google Scholar 

  • Nilson, T., Anniste, J., Lang, M., & Praks, J. (1999). Determination of needle area indices of coniferous forest canopies in the NOPEX region by ground-based optical measurements and satellite images. Agricultural and Forest Meteorology, 98–99, 449–462.

    Article  Google Scholar 

  • Peterson, D. L., Spanner, M. A., Running, S. W., & Teuber, K. B. (1987). Relationship of thematic mapper simulator data to the leaf area index of temperate coniferous forests. Remote Sensing of the Environment, 22, 323–341.

    Article  Google Scholar 

  • Pfister, R. D., Kovalchik, B. L., Arno, S. F., & Presby, R. C. (1977). Forest habitat types of Montana. USDA Forest Service General Technical Report 1NT-34.

    Google Scholar 

  • Potter, C. S., Randerson, J. T., Field, C. B., et al. (1993). Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 7,811–841.

    Article  Google Scholar 

  • Potter, C. S., Coughlan, J. C, & Brooks, V. (1999). Investigations of BOREAS spatial data in support of regional ecosystem modeling. Journal of Geophysical Research, 104, 771–27,788.

    Article  Google Scholar 

  • Potter, C. S., Alexander, S. E., Coughlan, J. C, & Klooster, S. A. (2001). Modeling biogenic emissions of isoprene: exploration of model drovers, climate control algorithms and use of global satellite observations. Atmospheric Environment, 35, 6151–6165.

    Article  Google Scholar 

  • Preto, G. (1992). Past and present of inventorying and monitoring systems. Forest Resource inventory and monitoring and remote sensing Technology. Proc. IURFO Centennial meeting Berlin, 1–10.

    Google Scholar 

  • Ranson, K. J., Sun, G., Weishampel, J. F., & Knox, R. G. (1997). Forest biomass from combines ecosystem and radar backscatter modeling. Remote Sensing of Environment, 59, 118–113.

    Article  Google Scholar 

  • Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. K., & Hibbard, K. A. (1999b). A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling, and EOS satellite data. Remote Sensing of Environment, 70, 108–127.

    Article  Google Scholar 

  • Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange, and primary production processes. Ecological Modeling, 42, 125–154.

    Article  Google Scholar 

  • Running, S. W., & Gower, S. T. (1991). FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiology, 9, 147–160.

    Google Scholar 

  • Running, S. W., Justice, C. O., Salmonson. V., et al. (1994). Terrestrial remote sensing and algorithms planned for EOS/MODIS. International Journal of Remote Sensing, 15, 3587–3620.

    Article  Google Scholar 

  • Running, S. W., Nemani, R., Glassy, J. M., & Thornoton, P. E. (1999a). MODIS daily photosynthesis (PSN) and annual net primary productivity production (NPP) product (MOD 17). Algorithm Theoretical Basis Document for NASA’s MODIS Land Surface Team. From http://modis.gsfc.nasa.gov/data/atbd/atbd_mod 16.pdf.

    Google Scholar 

  • Running, S. W., Nemani, R. R., Peterson, D. L., Band, L. E., Potts, D. P., Pierce, L. L., & Spanner, M. A. (1989). Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology, 70, 1090–1101.

    Article  Google Scholar 

  • Sellers, P. J. (1985). Canopy Reflectance, Photosynthesis and Transpiration. International Journal of Remote Sensing, 68, 1335–1372.

    Article  Google Scholar 

  • Sellers, P. J. (1987). Canopy Reflectance, Photosynthesis, and Transpiration 2. The role of biophysics in the linearity of their interdependence. Remote Sensing the Environment, 21, 143–183.

    Article  Google Scholar 

  • Silberstein, R. P., Sivapalan, M., & Wyllie, A. (1999). On the validation of a coupled water and energy balance model at small catchment scales. Journal of Hydrology, 220, 149–168.

    Article  Google Scholar 

  • Skidmore, A. K., Wood, G. B., & Shepherd, K. R. (1987). Remotely sensed digital data in forestry — a review. Australian Forestry, 50, 40–53

    Google Scholar 

  • Spanner, M. A., Johnson.  L., Miller,  J., et al. (1994). Remote sensing of seasonal leaf area index across the Oregon transect. Ecological Applications, 4, 258–271.

    Article  Google Scholar 

  • Tickle, P. K., Coops, N. C, & Hafner, S. D. (2001). Assessing forest productivity at local scales across a native eucalypt forest using a process model, 3PG-SPAT1AL. Forest Ecology and Management, 152, 275–291.

    Article  Google Scholar 

  • Thornton, P. E. (1998). Regional ecosystem simulation: combining surface and satellite-based observations to study linkages between terrestrial energy and mass budgets. Ph.D. Dissertation, University of Montana, School of Forestry.

    Google Scholar 

  • Thornton, P. E., & White, J. D. (1996). Biogeochemical characterization of the Columbia River Basin using the BGC model: Model description, ecophysiological inputs and landscape description. Final Report on file at USDA Forest Service Intermountain Fire Sciences Laboratory, Missoula, MT.

    Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.

    Article  Google Scholar 

  • Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., & Brigs, J. M. (1999). Relationship between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment, 70, 52–68.

    Article  Google Scholar 

  • Van Leeuwen, W. J. D., & Huete, A. R. (1996). Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sensing of Environment, 55, 123–138.

    Article  Google Scholar 

  • Veroustraete, F., Patyn, J., & Myneni, R. B. (1996). Estimating net ecosystem exchange of carbon using the Normalized Difference Vegetation Index and an ecosystem model. Remote Sensing of Environment, 58, 115–130.

    Article  Google Scholar 

  • Voirin, S., Calvet, J. S., Habets, F., & Noiilhan, A. (2001). Interactive vegetation modeling at a regional scale: Application to the Adour Basin. Physical Chemical Earth, 26,479–484.

    Article  Google Scholar 

  • Waring, R. H., Way, J., Hunt, E. R., Jr., Ranson, K. J., Weishampel, J. F., Oren, R., & Franklin, S. E. (1995). Imaging radar for ecosystem studies. BioScience, 45, 715–723.

    Article  Google Scholar 

  • Waring, R. H., Landsberg, J. J., & Williams, M. (1998). Net primary production of forests: a constant fraction of gross primary production Tree Physiology, 18, 129–134.

    Article  Google Scholar 

  • Waring, R. H., & Running, S. W. (1998). Forest Ecosystems: Analysis at Multiple Scales. Academic Press, San Diego, CA.

    Google Scholar 

  • Wang, J., White, K., & Robinson, G. J. (2000). Estimating surface net radiation by use of Landsat-5 TM and digital elevation models. International Journal of Remote Sensing, 21, 31–43.

    Article  MATH  Google Scholar 

  • Weymouth, G., & Le Marshall, J. (1994): An operational system to estimate insolation over the Australian Region. Proc. Pacific Ocean Remote Sensing Conference, 443–449.

    Google Scholar 

  • White, J. D., Ryan, K. C, & Running, S. W. (1994). Remote sensing and ecological modeling of the 1988 Red Bench fire. Proceedings of the 12 th Conference on Fire and Forest Meteorology, Oct. 26–28,1993, Jekyll Island, GA. Society of American Foresters.

    Google Scholar 

  • White, J. D., Running, S. W., Thornton, P. E., Keane, R. E., Ryan, K. C, Fagre, D. B., & Key, C. H. (1998). Assessing ecosystem simulations for climate variability research at Glacier National Park, USA. Ecological Applications, 8, 805–823.

    Article  Google Scholar 

  • White, J. D., Running, S. W., Nemani, R., Keane, R. E., & Ryan, K. C. (1997). Measurement and remote sensing of leaf are index in Rocky Mountain montane ecosystems. Canadian Journal of Forest Research, 27, 1714–1727.

    Article  Google Scholar 

  • White, J. D., Running, S. W., Ryan, K. C, & Key, C. C. (2002). Fuzzy logic merger of spectral and ecological information for improved montane forest mapping. Geocarto International, 16, (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coops, N.C., White, J.D. (2003). Modeling Forest Productivity Using Data Acquired Through Remote Sensing. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics