Skip to main content

siRNA Delivery via Electropulsation: A Review of the Basic Processes

  • Protocol
  • First Online:
Electroporation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1121))

Abstract

Due to their capacity for inducing strong and sequence specific gene silencing in cells, small interfering RNAs (siRNAs) are now recognized not only as powerful experimental tools for basic research in Molecular biology but with promising potentials in therapeutic development. Delivery is a bottleneck in many studies. There is a common opinion that full potential of siRNA as therapeutic agent will not be attained until better methodologies for its targeted intracellular delivery to cells and tissues are developed. Electropulsation (EP) is one of the physical methods successfully used to transfer siRNA into living cells in vitro and in vivo. This review will describe how siRNA electrotransfer obeys characterized biophysical processes (cell-size-dependent electropermeabilization, electrophoretic drag) with a strong control of a low loss of viability. Protocols can be easily adjusted by a proper setting of the electrical parameters and pulsing buffers. EP can be easily directly applied on animals. Preclinical studies showed that electropermeabilization brings a direct cytoplasmic distribution of siRNA and an efficient silencing of the targeted protein expression. EP appears as a promising tool for clinical applications of gene silencing. A panel of successful trials will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Higuchi Y, Kawakami S, Hashida M (2010) Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs 24:195–205

    Article  CAS  PubMed  Google Scholar 

  2. Singh SK, Hajeri PB (2009) siRNAs: their potential as therapeutic agents – Part II. Methods of delivery. Drug Discov Today 14:859–865

    Article  CAS  PubMed  Google Scholar 

  3. Krieg AM (2011) Is RNAi dead? Mol Ther 19:1001–1002

    Article  CAS  PubMed  Google Scholar 

  4. Baker M (2010) Homing in on delivery. Nature 464:1225–1228

    Article  Google Scholar 

  5. Hajeri PB, Singh SK (2009) siRNAs: their potential as therapeutic agents – Part I. Designing of siRNAs. Drug Discov Today 14:851–858

    Article  CAS  PubMed  Google Scholar 

  6. Escoffre JM, Debin A, Reynes JP et al (2008) Long-lasting in vivo gene silencing by electrotransfer of shRNA expressing plasmid. Technol Cancer Res Treat 7:109–116

    CAS  PubMed  Google Scholar 

  7. Mazda O, Kishida T (2009) Molecular therapeutics of cancer by means of electroporation-based transfer of siRNAs and EBV-based expression vectors. Front Biosci (Elite Ed) 1:316–331

    Google Scholar 

  8. Golzio M, Mazzolini L, Ledoux A et al (2007) In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Gene Ther 14:752–759

    Article  CAS  PubMed  Google Scholar 

  9. Wolf H, Rols MP, Boldt E, Neumann E, Teissie J (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Neumann E, Werner E, Sprafke A, Kruger K (1992) Electroporation phenomena. Electrooptics of plasmid DNA and of lipid bilayer vesicles. In: Jennings BR, Stoylov SP (eds) Colloid and molecular electro-optics. IOP publishing LTD, Bristol, pp 197–206

    Google Scholar 

  11. Rols MP, Delteil C, Serin G, Teissié J (1994) Temperature effects on electrotransfection of mammalian cells. Nucleic Acids Res 22:540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cemazar M, Sersa G (2007) Electrotransfer of therapeutic molecules into tissues. Curr Opin Mol Ther 9:554–562

    CAS  PubMed  Google Scholar 

  13. Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040

    Article  CAS  PubMed  Google Scholar 

  14. Rettig GR, Rice KG (2009) Quantitative in vivo imaging of non-viral-mediated gene expression and RNAi-mediated knockdown. Methods Mol Biol 574:155–171

    Article  CAS  PubMed  Google Scholar 

  15. Berezhna SY, Supekova L, Supek F, Schultz PG, Deniz AA (2006) siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA 103:7682–7687

    Article  CAS  PubMed  Google Scholar 

  16. Paganin-Gioanni A, Bellard E, Escoffre JM, Rols MP, Teissie J, Golzio M (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108:10443–10447

    Article  CAS  PubMed  Google Scholar 

  17. Stroh T, Erben U, Kühl AA, Zeitz M, Siegmund B (2010) Combined pulse electroporation – a novel strategy for highly efficient transfection of human and mouse cells. PLoS One 5:e9488

    Article  PubMed Central  PubMed  Google Scholar 

  18. Heng JB, Aksimentiev A, Ho C, Marks P et al (2006) The electromechanics of DNA in a synthetic nanopore. Biophys J 90:1098–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    Article  CAS  PubMed  Google Scholar 

  20. Hibino M, Shigemori M, Itoh H, Nagayama K, Kinosita K Jr (1991) Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys J 59:209–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  23. Kariko K, Bhuyan P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549

    CAS  PubMed  Google Scholar 

  24. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  CAS  PubMed  Google Scholar 

  25. Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC (2006) In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry 45:10614–10623

    Article  CAS  PubMed  Google Scholar 

  26. Corey DR (2007) Chemical modification: the key to clinical application of RNA interference? J Clin Invest 117:3615–3622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  CAS  PubMed  Google Scholar 

  28. Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci USA 97:5633–5638

    Article  CAS  PubMed  Google Scholar 

  29. Orio J, Bellard E, Baaziz H et al (2013) Sub-cellular temporal and spatial distribution of electrotransferred LNA/DNA oligomer. J RNAi Gene Silencing 9:479–485

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Pelofy S, Teissié J, Golzio M, Chabot S (2012) Chemically modified oligonucleotide-increased stability negatively correlates with its efficacy despite efficient electrotransfer. J Membr Biol 245:565–571

    Article  CAS  PubMed  Google Scholar 

  31. Teissié J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280

    Article  PubMed  Google Scholar 

  32. Neumann E, Shaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  Google Scholar 

  33. De Gennes PG (1999) Passive entry of a DNA molecule into a small pore. Proc Natl Acad Sci USA 96:7262–7264

    Article  PubMed  Google Scholar 

  34. Yu M, Tan W, Lin H (2012) A stochastic model for DNA translocation through an electropore. Biochim Biophys Acta 1818:2494–2501

    Article  CAS  PubMed  Google Scholar 

  35. Mihovilovic M, Hagerty N, Stein D (2013) Statistics of DNA capture by a solid-state nanopore. Phys Rev Lett 110:028102

    Article  PubMed  Google Scholar 

  36. Smith KC, Neu JC, Krassowska W (2004) Model of creation and evolution of stables electropores for DNA delivery. Biophys J 86:2813–2826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Krassowska W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Neu JC, Krassowska W (2003) Modeling postshock evolution of large electropores. Phys Rev E Stat Nonlin Soft Matter Phys 67:021915

    Article  PubMed  Google Scholar 

  39. Sukharev SI, Titomirov AV, Klenchin VA (1994) Electrically induced DNA transfer into cells. Electroporation in vivo. In: Wolff JA (ed) Gene therapeutics: methods and applications of direct gene transfer. Boston, MA, Birkhäuser, pp 210–232

    Chapter  Google Scholar 

  40. Hristova NI, Tsoneva I, Neumann E (1997) Sphingosine-mediated electroporative DNA transfer through lipid bilayers. FEBS Lett 415:81–86

    Article  CAS  PubMed  Google Scholar 

  41. Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E (1994) Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophys Chem 52:267–274

    Article  CAS  PubMed  Google Scholar 

  42. Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YA (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Winterbourne DJ, Thomas S, Hermon-Taylor J, Hussain I, Johnstone AP (1988) Electric-shock-mediated transfection of cells. Biochem J 251:427–434

    CAS  PubMed  Google Scholar 

  44. Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzev YA (1991) Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J 60:804–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tekle E, Astumian RD, Chock PB (1994) Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci USA 91:11512–11516

    Article  CAS  PubMed  Google Scholar 

  46. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4015–4053

    Article  Google Scholar 

  47. Bandyopadhyay S, Tarek M, Klein ML (1999) Molecular dynamics study of lipid-DNA complexes. J Phys Chem B 103:10075–10080

    Article  CAS  Google Scholar 

  48. Breton M, Delemotte L, Silve A, Mir LM, Tarek M (2012) Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc 134:13938–13941

    Article  CAS  PubMed  Google Scholar 

  49. Jain T, Papas A, Jadhav A, McBride R, Saez E (2012) In situ electroporation of surface-bound siRNAs in microwell arrays. Lab Chip 12:939–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Mobergslien A, Sioud M (2010) Optimized protocols for siRNA delivery into monocytes and dendritic cells. Methods Mol Biol 629:71–85

    PubMed  Google Scholar 

  51. Broderick KE, Chan A, Lin F et al (2012) Optimized in vivo transfer of small interfering RNA targeting dermal tissue using in vivo surface electroporation. Mol Ther Nucleic Acids 1:e11

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kang J, Ramu S, Lee S et al (2009) Phosphate-buffered saline-based nucleofection of primary endothelial cells. Anal Biochem 386:251–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Jordan ET, Collins M, Terefe J, Ugozzoli L, Rubio T (2008) Optimizing electroporation conditions in primary and other difficult-to-transfect cells. J Biomol Tech 19:328–334

    PubMed Central  PubMed  Google Scholar 

  54. Fujimoto H, Kato K, Iwata H (2008) Electroporation microarray for parallel transfer of small interfering RNA into mammalian cells. Anal Bioanal Chem 392:1309–1316

    Article  CAS  PubMed  Google Scholar 

  55. Adamo A, Arione A, Sharei A, Jensen KF (2013) Flow-through comb electroporation device for delivery of macromolecules. Anal Chem 85:1637–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wei Z, Zhao D, Li X et al (2011) A laminar flow electroporation system for efficient DNA and siRNA delivery. Anal Chem 83:5881–5887

    Article  CAS  PubMed  Google Scholar 

  57. Huang H, Wei Z, Huang Y et al (2011) An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip 11:163–172

    Article  CAS  PubMed  Google Scholar 

  58. Wahlgren J, De L, Karlson T et al (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

  60. Fujimoto H, Kato K, Iwata H (2010) Layer-by-layer assembly of small interfering RNA and poly(ethyleneimine) for substrate-mediated electroporation with high efficiency. Anal Bioanal Chem 397:571–578

    Article  CAS  PubMed  Google Scholar 

  61. Hu W, Zong Q, John-Baptiste A, Jessen B (2011) Transient knock down of checkpoint kinase 1 in hematopoietic progenitors is linked to bone marrow toxicity. Toxicol Lett 204:141–147

    Article  CAS  PubMed  Google Scholar 

  62. Jantsch J, Turza N, Volke M et al (2008) Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation. Immunol Meth 337:71–77

    Article  CAS  Google Scholar 

  63. Wiese M, Castiglione K, Hensel M, Schleicher U, Bogdan C, Jantsch J (2010) Small interfering RNA (siRNA) delivery into murine bone marrow-derived macrophages by electroporation. J Immunol Methods 353:102–110

    Article  CAS  PubMed  Google Scholar 

  64. Slanina H, Schmutzler M, Christodoulides M, Kim KS, Schubert-Unkmeir A (2012) Effective plasmid DNA and small interfering RNA delivery to diseased human brain microvascular endothelial cells. J Mol Microbiol Biotechnol 22:245–257

    Article  CAS  PubMed  Google Scholar 

  65. Tanaka M, Asaoka M, Yanagawa Y, Hirashima N (2011) Postmitotic CNS neurons Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 36:1482–1489

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka M, Yanagawa Y, Hirashima N (2009) Cerebellar cell cultures Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures. J Neurosci Methods 178:80–86

    Article  CAS  PubMed  Google Scholar 

  67. Zhao X, Min CK, Ko JK, Parness J, Kim do H, Weisleder N, Ma J (2010) Increased store-operated Ca2+ entry in skeletal muscle with reduced calsequestrin-1 expression. Biophys J 99:1556–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Lefebvre B, Vandewalle B, Longue J et al (2010) Efficient gene delivery and silencing of mouse and human pancreatic islets. BMC Biotechnol 10:28

    Article  PubMed Central  PubMed  Google Scholar 

  69. Mantei A, Rutz S, Janke M et al (2008) siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol 38:2616–2625

    Article  CAS  PubMed  Google Scholar 

  70. Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240

    Article  CAS  PubMed  Google Scholar 

  71. Gilbert RA, Jaroszeski MJ, Heller R (1997) Novel electrode designs for electrochemotherapy. Biochim Biophys Acta 1334:9–14

    Article  CAS  PubMed  Google Scholar 

  72. Jaroszeski MJ, Gilbert RA, Heller R (1997) In vivo antitumor effects of electrochemotherapy in a hepatoma model. Biochim Biophys Acta 1334:15–18

    Article  CAS  PubMed  Google Scholar 

  73. Ramirez LH, Orlowski S, An D et al (1998) Electrochemotherapy on liver tumours in rabbits. Br J Cancer 77:2104–2111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Mazeres S, Sel D, Golzio M, Pucihar G, Tamzali Y, Miklavcic D, Teissie J (2009) Non-invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release 134:125–131

    Article  CAS  PubMed  Google Scholar 

  75. Spugnini EP, Citro G, Porrello A (2005) Rational design of new electrodes for electrochemotherapy. J Exp Clin Cancer Res 24:245–254

    CAS  PubMed  Google Scholar 

  76. Tjelle TE, Salte R, Mathiesen I, Kjeken R (2006) A novel electroporation device for gene delivery in large animals and humans. Vaccine 24:4667–4670

    Article  CAS  PubMed  Google Scholar 

  77. Pucihar G, Kotnik T, Teissié J, Miklavcic D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J 36:173–185

    Article  PubMed  Google Scholar 

  78. Wasungu L, Escoffre JM, Valette A, Teissie J, Rols MP (2009) A 3D in vitro spheroid model as a way to study the mechanisms of electroporation. Int J Pharm 379:278–284

    Article  CAS  PubMed  Google Scholar 

  79. Molnar MJ, Gilbert R, Lu Y et al (2004) Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther 10:447–455

    Article  CAS  PubMed  Google Scholar 

  80. Filleur S, Courtin A, Ait-Si-Ali S et al (2003) SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 63:3919–3922

    CAS  PubMed  Google Scholar 

  81. Paganin-Gioanni A, Bellard E, Couderc B, Teissie J, Golzio M (2008) Tracking in vitro and in vivo siRNA electrotransfer in tumor cells. J RNAi Gene Silencing 4:281–288

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Golzio M, Mazzolini L, Moller P, Rols MP, Teissie J (2005) Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther 12:246–251

    Article  CAS  PubMed  Google Scholar 

  83. Lewis DL, Hagstrom JE, Loomis AG, Wolff JA, Herweijer H (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108

    Article  CAS  PubMed  Google Scholar 

  84. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418:38–39

    Article  CAS  PubMed  Google Scholar 

  85. Marra E, Palombo F, Ciliberto G, Aurisicchio L (2013) Kinesin spindle protein SiRNA slows tumor progression. J Cell Physiol 228:58–64

    Article  CAS  PubMed  Google Scholar 

  86. Takei Y, Nemoto T, Mu P et al (2008) In vivo silencing of a molecular target by short interfering RNA electroporation: tumor vascularization correlates to delivery efficiency. Mol Cancer Ther 7:211–221

    Article  CAS  PubMed  Google Scholar 

  87. Golzio M, Mazzolini L, Paganin-Gioanni A, Teissié J (2009) Targeted gene silencing into solid tumors with electrically mediated siRNA delivery. Methods Mol Biol 555:15–27

    Article  CAS  PubMed  Google Scholar 

  88. Nakai N, Kishida T, Shin-Ya M, Imanishi J, Ueda Y, Kishimoto S, Mazda O (2007) Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf. Gene Ther 14:357–365

    Article  CAS  PubMed  Google Scholar 

  89. Nakai N, Kishida T, Hartmann G, Katoh N, Imanishi J, Kishimoto S, Mazda O (2010) Mitf silencing cooperates with IL-12 gene transfer to inhibit melanoma in mice. Int Immunopharmacol 10:540–545

    Article  CAS  PubMed  Google Scholar 

  90. Wu Z, Li X, Zeng Y et al (2011) In vitro and in vivo inhibition of MRP gene expression and reversal of multidrug resistance by siRNA. Basic Clin Pharmacol Toxicol 108:177–184

    Article  CAS  PubMed  Google Scholar 

  91. Inoue A, Takahashi KA, Mazda O et al (2005) Electro-transfer of small interfering RNA ameliorated arthritis in rats. Biochem Biophys Res Commun 336:903–908

    Article  CAS  PubMed  Google Scholar 

  92. Nakagawa S, Arai Y, Mori H, Matsushita Y, Kubo T, Nakanishi T (2009) Small interfering RNA targeting CD81 ameliorated arthritis in rats. Biochem Biophys Res Commun 388:467–472

    Article  CAS  PubMed  Google Scholar 

  93. Tsuchida S, Arai Y, Kishida T et al (2012) Silencing the expression of connexin 43 decreases inflammation and joint destruction in experimental arthritis. J Orthop Res 31:525–530

    Article  PubMed  Google Scholar 

  94. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 101:16–22

    Article  CAS  PubMed  Google Scholar 

  95. Matsuda T, Cepko CL (2008) Analysis of gene function in the retina. Methods Mol Biol 423:259–278

    Article  CAS  PubMed  Google Scholar 

  96. Hao J, Li SK, Liu CY, Kao WW (2009) Electrically assisted delivery of macromolecules into the corneal epithelium. Exp Eye Res 89:934–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank their colleagues (Dr. S Chabot, M.P. Rols, E. Bellard, and S. Pelofy) in the group for many discussions.

The work was supported by grants from the EU (FP7 oncomirs #201102) and from the region Midi Pyrénées (# 11052700).

Research was conducted in the scope of the EBAM European Associated Laboratory (LEA) and of the COST Action TD1104 European network for development of electroporation-based technologies and treatments (EP4Bio2Med).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Golzio, M., Teissie, J. (2014). siRNA Delivery via Electropulsation: A Review of the Basic Processes. In: Li, S., Cutrera, J., Heller, R., Teissie, J. (eds) Electroporation Protocols. Methods in Molecular Biology, vol 1121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9632-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9632-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9631-1

  • Online ISBN: 978-1-4614-9632-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics