Skip to main content

Retinal Circadian Rhythms in Mammals Revealed Using Electroretinography

  • Chapter
  • First Online:
The Retina and Circadian Rhythms

Abstract

Light levels can change by up to ten orders of magnitude between midday and midnight. As a result, the visual system is faced with a large diurnal variation in functional demands. Two mechanisms exist to allow the retina to function under such varied conditions: adaptation and circadian rhythmicity. Adaptation occurs in response to the presenting light conditions and circadian rhythmicity allows the tissue to anticipate those light conditions. Circadian rhythmicity has been described at many points along the visual projection from its photoreceptive origins to the highest levels of visual processing. Electroretinography has proved a very useful tool in the assessment of retinal rhythms. It offers a noninvasive and quantitative assessment of the activity of first- and second-order cells in the retina and has been used by a number of researchers to describe diurnal and/or circadian rhythms and probe their mechanistic origins in several mammalian species. Here we review the various attempts to investigate these retinal rhythms, predominately by use of the electroretinogram, in several mammalian species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lythgoe JN, Shand J. Endogenous circadian retinomotor movements in the neon tetra (Paracheirodon innesi). Invest Ophthalmol Vis Sci. 1983;24(9):1203–10.

    CAS  PubMed  Google Scholar 

  2. Kolbinger W, Wagner D, Wagner HJ. Control of rod retinomotor movements in teleost retinae: the role of dopamine in mediating light-dependent and circadian signals. Cell Tissue Res. 1996;285(3):445–51.

    Article  CAS  PubMed  Google Scholar 

  3. Manglapus MK, Uchiyama H, Buelow NF, Barlow RB. Circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci. 1998;18(12):4775–84.

    CAS  PubMed  Google Scholar 

  4. Green CB. Molecular control of Xenopus retinal circadian rhythms. J Neuroendocrinol. 2003; 15(4):350–4.

    Article  CAS  PubMed  Google Scholar 

  5. Green CB, Besharse JC. Retinal circadian clocks and control of retinal physiology. J Biol Rhythms. 2004;19(2):102.

    Article  Google Scholar 

  6. Sutter EE, Tran D. The field topography of ERG components in man—I. The photopic luminance response. Vision Res. 1992;32(3):433–46.

    Article  CAS  PubMed  Google Scholar 

  7. Frishman LJ. Origins of the electroretinogram. In: Heckenlively J, Arden GB, editors. Principles and practice of clinical electrophysiology of vision, 2nd edition. MIT Press: Cambridge, MA; 2006. p. 139–185.

    Google Scholar 

  8. Kt B. The electroretinogram: its components and their origins. Vision Res. 1968;8:677.

    Google Scholar 

  9. Stockton RA, Slaughter MM. B-wave of the electroretinogram. A reflection of ON bipolar cell activity. J Gen Physiol. 1989;93(1):122.

    Article  Google Scholar 

  10. Sterling P, Smith RG, Rao R, Vardi N. Functional architecture of mammalian outer retina and bipolar cells. In: Archer S, Djamgoz MBA, Vallerga S, editors. Neurobiology and clinical aspects of the outer retina. London: Chapman & Hall; 1995. p. 325–48.

    Chapter  Google Scholar 

  11. Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci. 1994;35(2):635–45.

    CAS  PubMed  Google Scholar 

  12. Alexander KR, Raghuram A, Rajagopalan AS. Cone phototransduction and growth of the ERG b-wave during light adaptation. Vision Res. 2006;46(22):3941–8.

    Article  PubMed  Google Scholar 

  13. Heynen H, Wachtmeister L, van Norren D. Origin of the oscillatory potentials in the primate retina. Vision Res. 1985;25(10):1365–73.

    Article  CAS  PubMed  Google Scholar 

  14. Yu M, Peachey NS. Attenuation of oscillatory potentials in nob2 mice. Doc Ophthalmol. 2007;115(3):173–86.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Brindley GS, Hamasaki DI. The properties and nature of the R membrane of the frog’s eye. J Physiol. 1963;167:599–606.

    CAS  PubMed  Google Scholar 

  16. Gurevich L, Slaughter MM. Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res. 1993;33(17):2431–5.

    Article  CAS  PubMed  Google Scholar 

  17. Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994; 11(3):519–32.

    Article  CAS  PubMed  Google Scholar 

  18. Szikra T, Witkovsky P. Contributions of AMPA- and kainate-sensitive receptors to the photopic electroretinogram of the Xenopus retina. Vis Neurosci. 2001;18(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  19. Sharpe LT, Stockman A. Rod pathways: the importance of seeing nothing. Trends Neurosci. 1999;22(11):497–504.

    Article  CAS  PubMed  Google Scholar 

  20. Fu Y, Yau KW. Phototransduction in mouse rods and cones. Pflugers Arch. 2007;454(5):805–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Saszik SM, Robson JG, Frishman LJ. The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol. 2002;543(Pt 3):899–916.

    Article  CAS  PubMed  Google Scholar 

  22. Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol. 2004;555(Pt 1):153–73.

    Article  CAS  PubMed  Google Scholar 

  23. Verdon WA, Schneck ME, Haegerstrom-Portnoy G. A comparison of three techniques to estimate the human dark-adapted cone electroretinogram. Vision Res. 2003;43(19):2089–99.

    Article  PubMed  Google Scholar 

  24. Peachey NS, Alexander KR, Derlacki DJ, Fishman GA. Light adaptation and the luminance-response function of the cone electroretinogram. Doc Ophthalmol. 1992;79(4):363–9.

    Article  CAS  PubMed  Google Scholar 

  25. Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicolo M, Kosaras B, et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha-subunit. Proc Natl Acad Sci U S A. 2000;97(25):13913–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA, et al. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat Genet. 1997;15(2):216–9.

    Article  CAS  PubMed  Google Scholar 

  27. Besharse JC, Iuvone PM. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature. 1983;305(5930):133–5.

    Article  CAS  PubMed  Google Scholar 

  28. Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM. The circadian clock system in the mammalian retina. Bioessays. 2008;30(7):624–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Smeraski CA, Sollars PJ, Ogilvie MD, Enquist LW, Pickard GE. Suprachiasmatic nucleus input to autonomic circuits identified by retrograde transsynaptic transport of pseudorabies virus from the eye. J Comp Neurol. 2004;471(3):298–313.

    Article  PubMed  Google Scholar 

  30. Gastinger M, Bordt AS, Bernal MP, Marshak DW. Serotonergic retinopetal axons in the monkey retina. Curr Eye Res. 2005;30(12):1089–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gastinger MJ, Tian N, Horvath T, Marshak DW. Retinopetal axons in mammals: emphasis on histamine and serotonin. Curr Eye Res. 2006;31(7–8):655–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Korf HW, von Gall C. Mice, melatonin and the circadian system. Mol Cell Endocrinol. 2006;252(1–2):57–68.

    Article  CAS  PubMed  Google Scholar 

  33. White MP, Hock PA. Effects of continuous darkness on ERG correlates of disc shedding in rabbit retina. Exp Eye Res. 1992;54(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  34. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007; 130(4):730–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nozaki S, Wakakura M, Ishikawa S. Circadian rhythm of human electroretinogram. Jpn J Ophthalmol. 1983;27(2):346–52.

    CAS  PubMed  Google Scholar 

  36. Birch DG, Berson EL, Sandberg MA. Diurnal rhythm in the human rod ERG. Invest Ophthalmol Vis Sci. 1984;25(2):238.

    Google Scholar 

  37. Birch DG, Sandberg MA, Berson EL. Diurnal rhythm in the human rod ERG. Relationship to cyclic lighting. Invest Ophthalmol Vis Sci. 1986;27(2):268–70.

    CAS  PubMed  Google Scholar 

  38. White MP, Hock PA, Marmor MF. Electrophysiological correlates of rod outer segment disc shedding in rabbit retina. Vision Res. 1987;27(3):361.

    Article  CAS  Google Scholar 

  39. Sandberg MA, Pawlyk BS, Berson EL. Electroretinogram (ERG) sensitivity and phagosome frequency in the normal pigmented rat. Exp Eye Res. 1986;43(5):781–9.

    Article  CAS  PubMed  Google Scholar 

  40. Hankins MW, Jones RJ, Ruddock KH. Diurnal variation in the b-wave implicit time of the human electroretinogram. Vis Neurosci. 1998;15(1):67.

    Article  Google Scholar 

  41. Hankins MW, Jones SR, Jenkins A, Morland AB. Diurnal daylight phase affects the temporal properties of both the b-wave and d-wave of the human electroretinogram. Brain Res. 2001;889(1–2):343.

    Google Scholar 

  42. Danilenko KV, Plisov IL, Cooper HM, Wirz-Justice A, Hebert M. Human cone light sensitivity and melatonin rhythms following 24-hour continuous illumination. Chronobiol Int. 2011; 28(5):407–14.

    Article  CAS  PubMed  Google Scholar 

  43. Cameron MA, Barnard AR, Hut RA, Bonnefont X, van der Horst GT, Hankins MW, et al. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. J Biol Rhythms. 2008;23(6):489–501.

    Article  PubMed  Google Scholar 

  44. Sengupta A, Baba K, Mazzoni F, Pozdeyev NV, Strettoi E, Iuvone PM, et al. Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PLoS One. 2011;6(9):e24483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Cameron MA, Lucas RJ. Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG. Mol Vis. 2009;15:2209–16.

    CAS  PubMed  Google Scholar 

  46. Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci. 2008;31(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci. 2011;31(45): 16094–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Do MT, Yau KW. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 2011; 90(4):1547–81.

    Article  Google Scholar 

  49. Bailes HJ, Lucas RJ. Melanopsin and inner retinal photoreception. Cell Mol Life Sci. 2010; 67(1):99–111.

    Article  CAS  PubMed  Google Scholar 

  50. Hankins MW, Lucas RJ. The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol. 2002; 12(3):198.

    Article  Google Scholar 

  51. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424(6944):81.

    Article  Google Scholar 

  52. Barnard AR, Hattar S, Hankins MW, Lucas RJ. Melanopsin regulates visual processing in the mouse retina. Curr Biol. 2006;16(4):395.

    Article  Google Scholar 

  53. Wiechmann AF, Summers JA. Circadian rhythms in the eye: the physiological significance of melatonin receptors in ocular tissues. Prog Retin Eye Res. 2008;27(2):137–60.

    Article  CAS  PubMed  Google Scholar 

  54. Cahill GM, Besharse JC. Circadian clock functions localized in xenopus retinal photoreceptors. Neuron. 1993;10(4):573–7.

    Article  CAS  PubMed  Google Scholar 

  55. Liu C, Fukuhara C, Wessel 3rd JH, Iuvone PM, Tosini G. Localization of Aa-nat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection. Cell Tissue Res. 2004;315(2):197–201.

    Article  CAS  PubMed  Google Scholar 

  56. Iuvone PM, Brown AD, Haque R, Weller J, Zawilska JB, Chaurasia SS, et al. Retinal melatonin production: role of proteasomal proteolysis in circadian and photic control of arylalkylamine N-acetyltransferase. Invest Ophthalmol Vis Sci. 2002;43(2):564–72.

    PubMed  Google Scholar 

  57. Rufiange M, Dumont M, Lachapelle P. Correlating retinal function with melatonin secretion in subjects with an early or late circadian phase. Invest Ophthalmol Vis Sci. 2002;43(7):2491–9.

    PubMed  Google Scholar 

  58. Emser W, Dechoux R, Weiland M, Wirz-Justice A. Melatonin decreases the amplitude of the b-wave of the human electroretinogram. Experientia. 1993;49(8):686–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lavoie J, Gagne AM, Lavoie MP, Sasseville A, Charron MC, Hebert M. Circadian variation in the electroretinogram and the presence of central melatonin. Doc Ophthalmol. 2010;120(3): 265–72.

    Article  CAS  PubMed  Google Scholar 

  60. Gagne AM, Danilenko KV, Rosolen SG, Hebert M. Impact of oral melatonin on the electroretinogram cone response. J Circadian Rhythms. 2009;7:14.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Danilenko KV, Plisov IL, Wirz-Justice A, Hebert M. Human retinal light sensitivity and melatonin rhythms following four days in near darkness. Chronobiol Int. 2009;26(1):93–107.

    Article  CAS  PubMed  Google Scholar 

  62. Goto M, Oshima I, Tomita T, Ebihara S. Melatonin content of the pineal gland in different mouse strains. J Pineal Res. 1989;7(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  63. Tosini G, Menaker M. The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res. 1998;789(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  64. Baba K, Pozdeyev N, Mazzoni F, Contreras-Alcantara S, Liu C, Kasamatsu M, et al. Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor. Proc Natl Acad Sci U S A. 2009;106(35):15043–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH. Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science. 1978;202(4370): 901–2.

    Article  CAS  PubMed  Google Scholar 

  66. Parkinson D, Rando RR. Effect of light on dopamine turnover and metabolism in rabbit retina. Invest Ophthalmol Vis Sci. 1983;24(3):384–8.

    CAS  PubMed  Google Scholar 

  67. Umino O, Dowling JE. Dopamine release from interplexiform cells in the retina: effects of GnRH, FMRFamide, bicuculline, and enkephalin on horizontal cell activity. J Neurosci. 1991;11(10):3034–46.

    CAS  PubMed  Google Scholar 

  68. Witkovsky P, Gabriel R, Haycock JW, Meller E. Influence of light and neural circuitry on tyrosine hydroxylase phosphorylation in the rat retina. J Chem Neuroanat. 2000;19(2): 105–16.

    Article  CAS  PubMed  Google Scholar 

  69. Doyle SE, Grace MS, McIvor W, Menaker M. Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci. 2002;19(5):601.

    Article  Google Scholar 

  70. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108(1):17–40.

    Article  PubMed  Google Scholar 

  71. Jackson CR, Ruan GX, Aseem F, Abey J, Gamble K, Stanwood G, et al. Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci. 2012;32(27):9359–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci. 2009;29(4):761–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci U S A. 2008;105(37):14181–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. van der Horst GTJ, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999;398(6728): 627–30.

    Article  PubMed  Google Scholar 

  75. Brown TM, Wynne J, Piggins HD, Lucas RJ. Multiple hypothalamic cell populations encoding distinct visual information. J Physiol. 2011;589(Pt 5):1173–94.

    Article  CAS  PubMed  Google Scholar 

  76. Ruan G-X, Zhang D-Q, Zhou T, Yamazaki S, McMahon DG. Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A. 2006;103(25):9703–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Liu X, Zhang Z, Ribelayga CP. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PLoS One. 2012;7(11):e50602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Hannibal L, Georg B, Hindersson P, Fahrenkrug J. Light and darkness regulate melanopsin in the retinal ganglion cells of the albino Wistar rat. J Mol Neurosci. 2005;27(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  79. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci. 2005;22(12):3129–36.

    Article  PubMed  Google Scholar 

  80. Sakamoto K, Liu C, Tosini G. Circadian rhythms in the retina of rats with photoreceptor degeneration. J Neurochem. 2004;90(4):1019–24.

    Article  CAS  PubMed  Google Scholar 

  81. Weng S, Wong KY, Berson DM. Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythms. 2009;24(5):391–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Daan S, Pittendrigh CS. A functional analysis of circadian pacemakers in nocturnal rodents. II The variability of phase response curves. J Comp Physiol. 1976;106:253–66.

    Article  Google Scholar 

  83. Meijer JH, Watanabe K, Detari L, Schaap J. Circadian rhythm in light response in suprachiasmatic nucleus neurons of freely moving rats. Brain Res. 1996;741(1–2):352–5.

    Article  CAS  PubMed  Google Scholar 

  84. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299(5604):245–7.

    Article  CAS  PubMed  Google Scholar 

  85. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008; 453(7191):102–5.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007; 47(7):946–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal ganglion cells. PLoS One. 2011;6(3):e17860.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Lucas B.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cameron, M.A., Allen, A.E., Lucas, R.J. (2014). Retinal Circadian Rhythms in Mammals Revealed Using Electroretinography. In: Tosini, G., Iuvone, P., McMahon, D., Collin, S. (eds) The Retina and Circadian Rhythms. Springer Series in Vision Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9613-7_7

Download citation

Publish with us

Policies and ethics