Skip to main content

Circadian Organization of the Vertebrate Retina

  • Chapter
  • First Online:
The Retina and Circadian Rhythms

Part of the book series: Springer Series in Vision Research ((SSVR,volume 1))

Abstract

Our vision is different at different times of the day because our retina works differently at different times of day. These rhythms in the visual function are not just simple responses to the daily light–dark cycle but are in fact the overt expression of an endogenous, self-sustained circadian clock in the retina that drives many rhythms in retinal physiology and metabolism. Thus, the vertebrate retina is both a sensory organ and a 24-h biological clock. Here, we will explore the molecular, cellular, and neurochemical organization of the retinal circadian clock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassi CJ, Powers MK. Daily fluctuations in the detectability of dim lights by humans. Physiol Behav. 1986;38(6):871–7.

    CAS  PubMed  Google Scholar 

  2. Lotze M, Treutwein B, Roenneberg T. Daily rhythm of vigilance assessed by temporal resolution of the visual system. Vision Res. 2000;40(25):3467–73.

    CAS  PubMed  Google Scholar 

  3. Nozaki S, Wakakura M, Ishikawa S. Circadian rhythm of human electroretinogram. Jpn J Ophthalmol. 1983;27(2):346–52.

    CAS  PubMed  Google Scholar 

  4. Hankins MW, Jones RJ, Ruddock KH. Diurnal variation in the b-wave implicit time of the human electroretinogram. Vis Neurosci. 1998;15(1):55–67.

    CAS  PubMed  Google Scholar 

  5. Nordin S, Lötsch J, Murphy C, Hummel T, Kobal G. Circadian rhythm and desensitization in chemosensory event-related potentials in response to odorous and painful stimuli. Psychophysiology. 2003;40(4):612–9.

    PubMed  Google Scholar 

  6. Lotze M, Wittmann M, von Steinbüchel N, Pöppel E, Roenneberg T. Daily rhythm of temporal resolution in the auditory system. Cortex. 1999;35(1):89–100.

    CAS  PubMed  Google Scholar 

  7. Storch K-F, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007; 130(4):730–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Cameron MA, Barnard AR, Hut RA, Bonnefont X, van der Horst GT, Hankins MW, et al. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses. J Biol Rhythms. 2008;23(6):489–501.

    PubMed  Google Scholar 

  9. Granados-Fuentes D, Tseng A, Herzog ED. A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci. 2006;26(47):12219–25.

    CAS  PubMed  Google Scholar 

  10. Krishnan B, Dryer SE, Hardin PE. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature. 1999;400(6742):375–8.

    CAS  PubMed  Google Scholar 

  11. Barlow Jr RB. Circadian rhythms in the Limulus visual system. J Neurosci. 1983;3(4): 856–70.

    PubMed  Google Scholar 

  12. Page TL, Koelling E. Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. J Insect Physiol. 2003;49(7):697–707.

    CAS  PubMed  Google Scholar 

  13. Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol. 2004; 14(8):638–49.

    CAS  PubMed  Google Scholar 

  14. Besharse JC, Iuvone PM. Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature. 1983;305(5930):133–5.

    CAS  PubMed  Google Scholar 

  15. Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996; 272(5260):419–21.

    CAS  PubMed  Google Scholar 

  16. Tosini G, Menaker M. The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain Res. 1998;789(2):221–8.

    CAS  PubMed  Google Scholar 

  17. Sakamoto K, Liu C, Tosini G. Circadian rhythms in the retina of rats with photoreceptor degeneration. J Neurochem. 2004;90(4):1019–24.

    CAS  PubMed  Google Scholar 

  18. Kaneko M, Hernandez-Borsetti N, Cahill GM. Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proc Natl Acad Sci U S A. 2006;103(39):14614–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Tosini G, Menaker M. Multioscillatory circadian organization in a vertebrate, Iguana iguana. J Neurosci. 1998;18(3):1105–14.

    CAS  PubMed  Google Scholar 

  20. Steele CT, Tosini G, Siopes T, Underwood H. Time keeping by the quail’s eye: circadian regulation of melatonin production. Gen Comp Endocrinol. 2006;145(3):232–6.

    CAS  PubMed  Google Scholar 

  21. Doyle SE, Grace MS, McIvor W, Menaker M. Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci. 2002;19(5):593–601.

    PubMed  Google Scholar 

  22. Nir I, Haque R, Iuvone PM. Diurnal metabolism of dopamine in the mouse retina. Brain Res. 2000;870(1–2):118–25.

    CAS  PubMed  Google Scholar 

  23. Jaliffa CO, Saenz D, Resnik E, Keller Sarmiento MI, Rosenstein RE. Circadian activity of the GABAergic system in the golden hamster retina. Brain Res. 2001;912(2):195–202.

    CAS  PubMed  Google Scholar 

  24. Dmitriev AV, Mangel SC. Circadian clock regulation of pH in the rabbit retina. J Neurosci. 2001;21(8):2897–902.

    CAS  PubMed  Google Scholar 

  25. Teirstein PS, Goldman AI, O’Brien PJ. Evidence for both local and central regulation of rat rod outer segment disc shedding. Invest Ophthalmol Vis Sci. 1980;19(11):1268–73.

    CAS  PubMed  Google Scholar 

  26. Tosini G, Kasamatsu M, Sakamoto K. Clock gene expression in the rat retina: effects of lighting conditions and photoreceptor degeneration. Brain Res. 2007;1159:134–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Ruan G-X, Allen GC, Yamazaki S, McMahon DG. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol. 2008;6(10):e249.

    PubMed  Google Scholar 

  28. Ruan G-X, Zhang D-Q, Zhou T, Yamazaki S, McMahon DG. Circadian organization of the mammalian retina. Proc Natl Acad Sci U S A. 2006;103(25):9703–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Organisciak DT, Darrow RM, Barsalou L, Kutty RK, Wiggert B. Circadian-dependent retinal light damage in rats. Invest Ophthalmol Vis Sci. 2000;41(12):3694–701.

    CAS  PubMed  Google Scholar 

  30. Grewal R, Organisciak D, Wong P. Factors underlying circadian dependent susceptibility to light induced retinal damage. Adv Exp Med Biol. 2006;572(3):411–6.

    Google Scholar 

  31. Ogilvie JM, Speck JD. Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol Dis. 2002;10(1):33–40.

    CAS  PubMed  Google Scholar 

  32. Baba K, Pozdeyev N, Mazzoni F, Contreras-Alcantara S, Liu C, Kasamatsu M, et al. Melatonin modulates visual function and cell viability in the mouse retina via the MT1 melatonin receptor. Proc Natl Acad Sci U S A. 2009;106(35):15043–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Iuvone PM, Tigges M, Stone RA, Lambert S, Laties AM. Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci. 1991;32(5):1674–7.

    CAS  PubMed  Google Scholar 

  34. Lee HS, Nelms JL, Nguyen M, Silver R, Lehman MN. The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nat Neurosci. 2003;6(2):111–2.

    CAS  PubMed  Google Scholar 

  35. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet. 2008; 9(10):764–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron. 2001;30(2):525–36.

    CAS  PubMed  Google Scholar 

  37. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A. 1999;96(21):12114–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature. 1999; 398(6728):627–30.

    PubMed  Google Scholar 

  39. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000; 103(7):1009–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhu H, LaRue S, Whiteley A, Steeves TD, Takahashi JS, Green CB. The Xenopus clock gene is constitutively expressed in retinal photoreceptors. Brain Res Mol Brain Res. 2000; 75(2):303–8.

    CAS  PubMed  Google Scholar 

  41. Besharse JC, Zhuang M, Freeman K, Fogerty J. Regulation of photoreceptor Per1 and Per2 by light, dopamine and a circadian clock. Eur J Neurosci. 2004;20(1):167–74.

    PubMed  Google Scholar 

  42. Zhuang M, Wang Y, Steenhard BM, Besharse JC. Differential regulation of two period genes in the Xenopus eye. Brain Res Mol Brain Res. 2000;82(1–2):52–64.

    CAS  PubMed  Google Scholar 

  43. Zhu H, Green CB. Three cryptochromes are rhythmically expressed in Xenopus laevis retinal photoreceptors. Mol Vis. 2001;7:210–5.

    CAS  PubMed  Google Scholar 

  44. Bailey MJ, Chong NW, Xiong J, Cassone VM. Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors. FEBS Lett. 2002;513(2–3):169–74.

    CAS  PubMed  Google Scholar 

  45. Haque R, Chaurasia SS, Wessel 3rd JH, Iuvone PM. Dual regulation of cryptochrome 1 mRNA expression in chicken retina by light and circadian oscillators. Neuroreport. 2002; 13(17):2247–51.

    CAS  PubMed  Google Scholar 

  46. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564–9.

    CAS  PubMed  Google Scholar 

  47. Miyamoto Y, Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci U S A. 1998;95(11):6097–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Namihira M, Honma S, Abe H, Masubuchi S, Ikeda M, Honmaca K. Circadian pattern, light responsiveness and localization of rPer1 and rPer2 gene expression in the rat retina. Neuroreport. 2001;12(3):471–5.

    CAS  PubMed  Google Scholar 

  49. Witkovsky P, Veisenberger E, LeSauter J, Yan L, Johnson M, Zhang D-Q, et al. Cellular location and circadian rhythm of expression of the biological clock gene Period 1 in the mouse retina. J Neurosci. 2003;23(20):7670–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Thompson CL, Rickman CB, Shaw SJ, Ebright JN, Kelly U, Sancar A, et al. Expression of the blue-light receptor cryptochrome in the human retina. Invest Ophthalmol Vis Sci. 2003;44(10):4515–21.

    PubMed  Google Scholar 

  51. Namihira M, Honma S, Abe H, Tanahashi Y, Ikeda M, Honma K. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina. Neurosci Lett. 1999;271(1):1–4.

    CAS  PubMed  Google Scholar 

  52. Baba K, Sengupta A, Tosini M, Contreras-Alcantara S, Tosini G. Circadian regulation of the PERIOD 2::LUCIFERASE bioluminescence rhythm in the mouse retinal pigment epithelium-choroid. Mol Vis. 2010;16:2605–11.

    CAS  PubMed  Google Scholar 

  53. Hastings MH, Reddy AB, McMahon DG, Maywood ES. Analysis of circadian mechanisms in the suprachiasmatic nucleus by transgenesis and biolistic transfection. Methods Enzymol. 2005;393:579–92.

    CAS  PubMed  Google Scholar 

  54. Ruan G-X, Gamble KL, Risner ML, Young LA, McMahon DG. Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. PLoS One. 2012; 7(6):e38985.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell. 2007;129(3): 605–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Pendergast JS, Friday RC, Yamazaki S. Distinct functions of Period2 and Period3 in the mouse circadian system revealed by in vitro analysis. PLoS One. 2010;5(1):e8552.

    PubMed Central  PubMed  Google Scholar 

  57. Cahill GM, Besharse JC. Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron. 1993;10(4):573–7.

    CAS  PubMed  Google Scholar 

  58. Pierce ME, Sheshberadaran H, Zhang Z, Fox LE, Applebury ML, Takahashi JS. Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron. 1993;10(4):579–84.

    CAS  PubMed  Google Scholar 

  59. Ko GY, Ko ML, Dryer SE. Circadian regulation of cGMP-gated channels of vertebrate cone photoreceptors: role of cAMP and Ras. J Neurosci. 2004;24(6):1296–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Hayasaka N, LaRue SI, Green CB. In vivo disruption of Xenopus CLOCK in the retinal photoreceptor cells abolishes circadian melatonin rhythmicity without affecting its production levels. J Neurosci. 2002;22(5):1600–7.

    CAS  PubMed  Google Scholar 

  61. Hayasaka N, LaRue SI, Green CB. Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus. PLoS One. 2010;5(12):e15599.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Tosini G. Melatonin circadian rhythm in the retina of mammals. Chronobiol Int. 2000; 17(5):599–612.

    CAS  PubMed  Google Scholar 

  63. Liu X, Zhang Z, Ribelayga CP. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PLoS One. 2012;7(11):e50602.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Dorenbos R, Contini M, Hirasawa H, Gustincich S, Raviola E. Expression of circadian clock genes in retinal dopaminergic cells. Vis Neurosci. 2007;24(4):573–80.

    PubMed  Google Scholar 

  65. Tosini G, Davidson AJ, Fukuhara C, Kasamatsu M, Castanon-Cervantes O. Localization of a circadian clock in mammalian photoreceptors. FASEB J. 2007;21(14):3866–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Sandu C, Hicks D, Felder-Schmittbuhl M-P. Rat photoreceptor circadian oscillator strongly relies on lighting conditions. Eur J Neurosci. 2011;34(3):507–16.

    PubMed  Google Scholar 

  67. Gustincich S, Contini M, Gariboldi M, Puopolo M, Kadota K, Bono H, et al. Gene discovery in genetically labeled single dopaminergic neurons of the retina. Proc Natl Acad Sci U S A. 2004;101(14):5069–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sengupta A, Baba K, Mazzoni F, Pozdeyev NV, Strettoi E, Iuvone PM, et al. Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PLoS One. 2011;6(9):e24483.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Jackson CR, Ruan G-X, Aseem F, Abey J, Gamble K, Stanwood G, et al. Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci. 2012;32(27):9359–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Zhang D-Q, Zhou T, Ruan G-X, McMahon DG. Circadian rhythm of Period1 clock gene expression in NOS amacrine cells of the mouse retina. Brain Res. 2005;1050(1–2):101–9.

    CAS  PubMed  Google Scholar 

  71. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci. 2005;22(12):3129–36.

    PubMed  Google Scholar 

  72. Sakamoto K, Liu C, Tosini G. Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J Neurosci. 2004;24(43):9693–7.

    CAS  PubMed  Google Scholar 

  73. Mathes A, Engel L, Holthues H, Wolloscheck T, Spessert R. Daily profile in melanopsin transcripts depends on seasonal lighting conditions in the rat retina. J Neuroendocrinol. 2007;19(12):952–7.

    CAS  PubMed  Google Scholar 

  74. Weng S, Wong KY, Berson DM. Circadian modulation of melanopsin-driven light response in rat ganglion-cell photoreceptors. J Biol Rhythms. 2009;24(5):391–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Zele AJ, Feigl B, Smith SS, Markwell EL. The circadian response of intrinsically photosensitive retinal ganglion cells. PLoS One. 2011;6(3):e17860.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Doyle SE, McIvor WE, Menaker M. Circadian rhythmicity in dopamine content of mammalian retina: role of the photoreceptors. J Neurochem. 2002;83(1):211–9.

    CAS  PubMed  Google Scholar 

  77. Block GD, McMahon DG. Cellular analysis of the Bulla ocular circadian pacemaker system III. Localization of the circadian pacemaker. J Comp Physiol A. 1984;155:387–95.

    Google Scholar 

  78. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science. 2003;302(5649):1408–12.

    CAS  PubMed  Google Scholar 

  79. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8(4):476–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Maywood ES, Reddy AB, Wong GK, O’Neill JS, O’Brien JA, McMahon DG, et al. Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol. 2006;16(6):599–605.

    CAS  PubMed  Google Scholar 

  81. Zhang D-Q, Belenky MA, Sollars PJ, Pickard GE, McMahon DG. Melanopsin mediates retrograde visual signaling in the retina. PLoS One. 2012;7(8):e42647.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Zhang D-Q, Wong KY, Sollars PJ, Berson DM, Pickard GE, McMahon DG. Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci U S A. 2008;105(37):14181–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004;108(1):17–40.

    PubMed  Google Scholar 

  84. Cohen AI, Todd RD, Harmon S, O’Malley KL. Photoreceptors of mouse retinas possess D4 receptors coupled to adenylate cyclase. Proc Natl Acad Sci U S A. 1992;89(24):12093–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Cahill GM, Besharse JC. Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. J Neurosci. 1991; 11(10):2959–71.

    CAS  PubMed  Google Scholar 

  86. Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci U S A. 2006;103(16):6386–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Morgan WW, Kamp CW. Dopaminergic amacrine neurons of rat retinas with photoreceptor degeneration continue to respond to light. Life Sci. 1980;26(19):1619–26.

    CAS  PubMed  Google Scholar 

  88. Vugler AA, Redgrave P, Hewson-Stoate NJ, Greenwood J, Coffey PJ. Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat. 2007;33(1):9–22.

    CAS  PubMed  Google Scholar 

  89. Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, Lucas RJ. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci. 2009;29(4):761–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Qian H, Dowling JE. Novel GABA responses from rod-driven retinal horizontal cells. Nature. 1993;361(6408):162–4.

    CAS  PubMed  Google Scholar 

  91. Ning K, Li L, Liao M, Liu B, Mielke JG, Chen Y, et al. Circadian regulation of GABAA receptor function by CKI epsilon-CKI delta in the rat suprachiasmatic nuclei. Nat Neurosci. 2004;7(5):489–90.

    CAS  PubMed  Google Scholar 

  92. Dubocovich ML. Melatonin is a potent modulator of dopamine release in the retina. Nature. 1983;306(5945):782–4.

    CAS  PubMed  Google Scholar 

  93. Klitten LL, Rath MF, Coon SL, Kim J-S, Klein DC, Møller M. Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp Eye Res. 2008;87(5):471–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, et al. Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci. 2002;22(6):2063–73.

    CAS  PubMed  Google Scholar 

  95. Pozdeyev N, Tosini G, Li L, Ali F, Rozov S, Lee RH, et al. Dopamine modulates diurnal and circadian rhythms of protein phosphorylation in photoreceptor cells of mouse retina. Eur J Neurosci. 2008;27(10):2691–700.

    PubMed Central  PubMed  Google Scholar 

  96. Jackson CR, Chaurasia SS, Hwang CK, Iuvone PM. Dopamine D4 receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur J Neurosci. 2011;34(1):57–64.

    PubMed Central  PubMed  Google Scholar 

  97. Jackson CR, Chaurasia SS, Zhou H, Haque R, Storm DR, Iuvone PM. Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells. J Neurochem. 2009;109(1):148–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ribelayga C, Cao Y, Mangel SC. The circadian clock in the retina controls rod-cone coupling. Neuron. 2008;59(5):790–801.

    CAS  PubMed  Google Scholar 

  99. Ribelayga C, Mangel SC. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina. J Comp Neurol. 2003; 467(2):243–53.

    CAS  PubMed  Google Scholar 

  100. Ribelayga C, Mangel SC. Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock. Vis Neurosci. 2007;24(3):333–44.

    PubMed  Google Scholar 

  101. Korenbrot JI, Fernald RD. Circadian rhythm and light regulate opsin mRNA in rod photoreceptors. Nature. 1989;337(6206):454–7.

    CAS  PubMed  Google Scholar 

  102. Berson DM. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 2003;26(6):314–20.

    CAS  PubMed  Google Scholar 

  103. Yamazaki S, Alones V, Menaker M. Interaction of the retina with suprachiasmatic pacemakers in the control of circadian behavior. J Biol Rhythms. 2002;17(4):315–29.

    PubMed  Google Scholar 

  104. Van Hook MJ, Wong KY, Berson DM. Dopaminergic modulation of ganglion-cell photoreceptors in rat. Eur J Neurosci. 2012;35(4):507–18.

    PubMed Central  PubMed  Google Scholar 

  105. Manglapus MK, Iuvone PM, Underwood H, Pierce ME, Barlow RB. Dopamine mediates circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci. 1999; 19(10):4132–41.

    CAS  PubMed  Google Scholar 

  106. Emran F, Rihel J, Adolph AR, Dowling JE. Zebrafish larvae lose vision at night. Proc Natl Acad Sci U S A. 2010;107(13):6034–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang Y, Mangel SC. A circadian clock regulates rod and cone input to fish retinal cone horizontal cells. Proc Natl Acad Sci U S A. 1996;93(10):4655–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Krizaj D, Gabriel R, Owen WG, Witkovsky P. Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol. 1998;398(4):529–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Hampson EC, Vaney DI, Weiler R. Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci. 1992;12(12):4911–22.

    CAS  PubMed  Google Scholar 

  110. Ingster-Moati I, Le Coz P, Albuisson E, Fromont G, Pierron C, Grall Y, et al. [Static contrast sensitivity in idiopathic Parkinson disease]. Rev Neurol (Paris). 1996;152(12):738–43.

    CAS  Google Scholar 

  111. Haug BA, Trenkwalder C, Arden GB, Oertel WH, Paulus W. Visual thresholds to low-contrast pattern displacement, color contrast, and luminance contrast stimuli in Parkinson’s disease. Mov Disord. 1994;9(5):563–70.

    CAS  PubMed  Google Scholar 

  112. Ikeda H, Head GM, Ellis CJ. Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vision Res. 1994;34(19): 2629–38.

    CAS  PubMed  Google Scholar 

  113. Herrmann R, Heflin SJ, Hammond T, Lee B, Wang J, Gainetdinov RR, et al. Rod vision is controlled by dopamine-dependent sensitization of rod bipolar cells by GABA. Neuron. 2011;72(1):101–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Hölter P, Kunst S, Wolloscheck T, Kelleher DK, Sticht C, Wolfrum U, et al. The retinal clock drives the expression of Kcnv2, a channel essential for visual function and cone survival. Invest Ophthalmol Vis Sci. 2012;53(11):6947–54.

    PubMed  Google Scholar 

  115. Bartmann M, Schaeffel F, Hagel G, Zrenner E. Constant light affects retinal dopamine levels and blocks deprivation myopia but not lens-induced refractive errors in chickens. Vis Neurosci. 1994;11(2):199–208.

    CAS  PubMed  Google Scholar 

  116. Feldkaemper M, Diether S, Kleine G, Schaeffel F. Interactions of spatial and luminance information in the retina of chickens during myopia development. Exp Eye Res. 1999; 68(1):105–15.

    CAS  PubMed  Google Scholar 

  117. Guo SS, Sivak JG, Callender MG, Diehl-Jones B. Retinal dopamine and lens-induced refractive errors in chicks. Curr Eye Res. 1995;14(5):385–9.

    CAS  PubMed  Google Scholar 

  118. Rohrer B, Spira AW, Stell WK. Apomorphine blocks form-deprivation myopia in chickens by a dopamine D2-receptor mechanism acting in retina or pigmented epithelium. Vis Neurosci. 1993;10(3):447–53.

    CAS  PubMed  Google Scholar 

  119. Weiss S, Schaeffel F. Diurnal growth rhythms in the chicken eye: relation to myopia development and retinal dopamine levels. J Comp Physiol A. 1993;172(3):263–70.

    CAS  PubMed  Google Scholar 

  120. Stone RA, Pardue MT, Iuvone PM, Khurana TS. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res. 2013;114:35–47.

    CAS  PubMed  Google Scholar 

  121. Koyanagi S, Kuramoto Y, Nakagawa H, Aramaki H, Ohdo S, Soeda S, et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63(21):7277–83.

    CAS  PubMed  Google Scholar 

  122. Chilov D, Hofer T, Bauer C, Wenger RH, Gassmann M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 2001;15(14):2613–22.

    CAS  PubMed  Google Scholar 

  123. Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287(4):H1554–60.

    CAS  PubMed  Google Scholar 

  124. Sinha S, Vohra PK, Bhattacharya R, Dutta S, Sinha S, Mukhopadhyay D. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J Cell Sci. 2009;122(Pt 18):3385–92.

    CAS  PubMed  Google Scholar 

  125. Bhatwadekar AD, Yan Y, Qi X, Thinschmidt JS, Neu MB, Li Calzi S, et al. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow. Diabetes. 2013;62(1):273–82.

    CAS  PubMed  Google Scholar 

  126. Busik JV, Tikhonenko M, Bhatwadekar A, Opreanu M, Yakubova N, Caballero S, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med. 2009;206(13):2897–906.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM. A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron. 2006;50(3): 465–77.

    CAS  PubMed  Google Scholar 

  128. DeBruyne JP, Weaver DR, Reppert SM. Peripheral circadian oscillators require CLOCK. Curr Biol. 2007;17(14):R538–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. McMahon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McMahon, D.G. (2014). Circadian Organization of the Vertebrate Retina. In: Tosini, G., Iuvone, P., McMahon, D., Collin, S. (eds) The Retina and Circadian Rhythms. Springer Series in Vision Research, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9613-7_5

Download citation

Publish with us

Policies and ethics