Skip to main content

Tidal Forces

  • Chapter
  • First Online:
Principles of Astrophysics

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

  • 121k Accesses

Abstract

Most of our analysis so far has used point masses. Now we ask whether the sizes of objects affect their gravitational interaction. For the source of gravity, size does not matter if the object is spherically symmetric (see Sect. 2.3). For the target of gravity, however, size does matter because gravity pulls harder on one side of the target than on the other. Newton studied this problem and realized that variations in the Moon’s gravity across the Earth’s surface would “squeeze” the oceans and create the tides. This phenomenon is therefore known as the tidal force, and it has a variety of interesting consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

Notes

  1. 1.

    Think of repeatedly bending a paper clip back and forth.

References

  1. F.R. Stephenson, Astron. Geophys. 44(2), 2.22 (2003)

    Article  Google Scholar 

  2. G.E. Williams, Rev. Geophys. 38, 37 (2000)

    Article  ADS  Google Scholar 

  3. J.O. Dickey et al., Science 265(5171), 482 (1994)

    Article  ADS  Google Scholar 

  4. S.J. Peale, P. Cassen, R.T. Reynolds, Science 203, 892 (1979)

    Article  ADS  Google Scholar 

  5. L.A. Morabito, S.P. Synnott, P.N. Kupferman, S.A. Collins, Science 204, 972 (1979)

    Article  ADS  Google Scholar 

  6. D.A. Williams, L.P. Keszthelyi, D.A. Crown, J.A. Yff, W.L. Jaeger, P.M. Schenk, P.E. Geissler, T.L. Becker, Icarus 214, 91 (2011)

    Article  ADS  Google Scholar 

  7. A. Vidal-Madjar, A. Lecavelier des Etangs, J.M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, M. Mayor, Nature 422, 143 (2003)

    Google Scholar 

  8. H.A. Knutson, D. Charbonneau, L.E. Allen, J.J. Fortney, E. Agol, N.B. Cowan, A.P. Showman, C.S. Cooper, S.T. Megeath, Nature 447, 183 (2007)

    Article  ADS  Google Scholar 

  9. S. Faigler, L. Tal-Or, T. Mazeh, D.W. Latham, L.A. Buchhave, Astrophys. J. 771, 26 (2013)

    Article  ADS  Google Scholar 

  10. S.L. Baliunas, G.W. Henry, R.A. Donahue, F.C. Fekel, W.H. Soon, Astrophys. J. Lett. 474, L119 (1997)

    Article  ADS  Google Scholar 

  11. R.P. Butler, G.W. Marcy, E. Williams, H. Hauser, P. Shirts, Astrophys. J. Lett. 474, L115 (1997)

    Article  ADS  Google Scholar 

  12. C.F. Chyba, D.G. Jankowski, P.D. Nicholson, Astron. Astrophys. 219, L23 (1989)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keeton, C. (2014). Tidal Forces. In: Principles of Astrophysics. Undergraduate Lecture Notes in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9236-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9236-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9235-1

  • Online ISBN: 978-1-4614-9236-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics