Skip to main content

The Role of HGF/c-MET in Head and Neck Squamous Cell Carcinoma

  • Chapter
  • First Online:
Molecular Determinants of Head and Neck Cancer

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Head and Neck Squamous Cell Carcinoma (HNSCC) remains a formidable challenge to physicians, scientists, and patients. New targets that can be exploited to improve the outcome of patients afflicted with this dreadful disease are desperately needed: one such potential target is c-MET. The c-MET receptor tyrosine kinase, also known as hepatocyte growth factor receptor (HGFR), is robustly overexpressed and sometimes mutated or amplified in head and neck cancer cells, while overexpression of its ligand, hepatocyte growth factor/scatter factor (HGF/SF), often occurs in tumor-adjacent mesenchymal cells, providing paracrine signals that support tumor growth. Activation of c-MET stimulates numerous downstream signaling pathways that contribute to tumor growth, including GRB2/RAS, PI3K, STAT3, SRC, β-catenin, and Notch. Overexpression or anomalous activation of c-MET is often associated with resistance to targeted therapies inhibiting receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR), that communicate to similar growth factor cascades. In this review, we emphasize the role of c-MET/HGF in HNSCC as well as the potential for therapeutic targeting of this receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med. 2008;359(11):1143–54.

    Article  PubMed  CAS  Google Scholar 

  2. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22.

    Article  PubMed  CAS  Google Scholar 

  3. Pfister DG, et al. Head and neck cancers. J Natl Compr Cancer Netw. 2011;9(6):596–649.

    Google Scholar 

  4. De Herdt MJ, de Jong RJB. HGF and c-MET as potential orchestrators of invasive growth in head and neck squamous cell carcinoma. Front Bioscie-Landmark. 2008;13:2516–26.

    Article  CAS  Google Scholar 

  5. Lo Muzio L, et al. Effect of c-Met expression on survival in head and neck squamous cell carcinoma. Tumor Biol. 2006;27(3):115–21.

    Article  CAS  Google Scholar 

  6. Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  PubMed  CAS  Google Scholar 

  7. Blumenschein GR Jr, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol. 2012;30(26):3287–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer. 2006;6(8):637–45.

    Article  PubMed  CAS  Google Scholar 

  9. Sadiq AA, Salgia R. Inhibition of MET receptor tyrosine kinase and its ligand hepatocyte growth factor. J Thorac Oncol. 2012;7(16 Suppl 5):S372–4.

    Article  PubMed  Google Scholar 

  10. Akervall J, et al. Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res. 2004;10(24):8204–13.

    Article  PubMed  CAS  Google Scholar 

  11. Seiwert TY, et al. The MET Receptor Tyrosine Kinase Is a Potential Novel Therapeutic Target for Head and Neck Squamous Cell Carcinoma. Cancer Res. 2009;69(7):3021–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Molinolo AA, et al. Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 2009;45(4–5):324–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol. 2009;19(10):542–51.

    Article  PubMed  CAS  Google Scholar 

  14. Xu H, et al. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011;17(13):4425–38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Seiwert T, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2013;31(2):417–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Knowles LM, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Singleton KR, et al. A receptor tyrosine kinase network composed of fibroblast growth factor receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and neck squamous carcinoma cell lines. Mol Pharmacol. 2013;83(4):882–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Park M, et al. Mechanism of met oncogene activation. Cell. 1986;45(6):895–904.

    Article  PubMed  CAS  Google Scholar 

  19. Cooper CS, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    Article  PubMed  CAS  Google Scholar 

  20. Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene. 2007;26(9):1276–85.

    Article  PubMed  CAS  Google Scholar 

  21. Park M, et al. Sequence of met protooncogene Cdna has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci U S A. 1987;84(18):6379–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Bottaro DP, et al. Identification of the Hepatocyte Growth-Factor Receptor as the C-Met Protooncogene Product. Science. 1991;251(4995):802–4.

    Article  PubMed  CAS  Google Scholar 

  23. Rodrigues GA, Naujokas MA, Park M. Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol. 1991;11(6):2962–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol. 2009;4(4):444–7.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gherardi E, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103.

    Article  PubMed  CAS  Google Scholar 

  26. Giordano S, et al. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature. 1989;339(6220):155–6.

    Article  PubMed  CAS  Google Scholar 

  27. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–48.

    Article  PubMed  CAS  Google Scholar 

  28. Gherardi E, et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A. 2006;103(11):4046–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Komada M, et al. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor by furin. FEBS Lett. 1993;328(1–2):25–9.

    Article  PubMed  CAS  Google Scholar 

  30. Chen Z. Aberrant Activation of HGF/c-MET Signaling and targeted therapy in squamous cancer, in signaling pathways in squamous cancer. In: Glick AB, Van Waes C, Editors. New York: Springer; 2011. p. 462.

    Google Scholar 

  31. Prat M, et al. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol. 1991;11(12):5954–62.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Gherardi E, et al. The sema domain. Curr Opin Struct Biol. 2004;14(6):669–78.

    Article  PubMed  CAS  Google Scholar 

  33. Basilico C, et al. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J Biol Chem. 2008;283(30):21267–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  PubMed  CAS  Google Scholar 

  35. Sadiq AA, Salgia R. MET As a Possible Target for Non-Small-Cell Lung Cancer. J Clin Oncol. 2013;31(8):1089–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Ganesan R, et al. Proteolytic activation of pro-macrophage-stimulating protein by hepsin. Mol Cancer Res. 2011;9(9):1175–86.

    Article  PubMed  CAS  Google Scholar 

  37. Wang MH, et al. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol Sin. 2010;31(9):1181–8.

    Article  PubMed  CAS  Google Scholar 

  38. Welm AL, et al. The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc Natl Acad Sci U S A. 2007;104(18):7570–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Yoon TM, et al. Expression of the receptor tyrosine kinase recepteur d’origine nantais and its association with tumor progression in hypopharyngeal cancer. Head Neck. 2012.

    Google Scholar 

  40. Yao HP, et al. The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells. Mol Cancer. 2011;10.

    Google Scholar 

  41. Kermorgant S, Parker PJ. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol. 2008;182(5):855–63.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Kermorgant S, Zicha D, Parker PJ. PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J. 2004;23(19):3721–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Cho KW, et al. Identification of a pivotal endocytosis motif in c-Met and selective modulation of HGF-dependent aggressiveness of cancer using the 16-mer endocytic peptide. Oncogene. 2013;32(8):1018–29.

    Article  PubMed  CAS  Google Scholar 

  44. Petrelli A, et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002;416(6877):187–90.

    Article  PubMed  CAS  Google Scholar 

  45. Li N, et al. Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of the cMet-tyrosine kinase. J Biol Chem. 2007;282(23):16764–75.

    Article  PubMed  CAS  Google Scholar 

  46. Singleton PA, et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity—role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem. 2007;282(42):30643–57.

    Article  PubMed  CAS  Google Scholar 

  47. Ogi S, et al. Sorting nexin 2-mediated membrane trafficking of c-Met contributes to sensitivity of molecular-targeted drugs. Cancer Sci. 2013;104(5):573–83.

    Article  PubMed  CAS  Google Scholar 

  48. Kamei T, et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells—regulation by Rho, Rac and Rab small G proteins. Oncogene. 1999;18(48):6776–84.

    Article  PubMed  CAS  Google Scholar 

  49. Joffre C, et al. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol. 2011;13(7):827–U227.

    Article  PubMed  CAS  Google Scholar 

  50. Kermorgant S, Parker PJ. c-met signalling—spatio-temporal decisions. Cell Cycle. 2005;4(3):352–5.

    Article  PubMed  CAS  Google Scholar 

  51. Ultsch M, et al. Crystal structure of the NK1 fragment of human hepatocyte growth factor at 2.0 A resolution. Structure. 1998;6(11):1383–93.

    Article  PubMed  CAS  Google Scholar 

  52. Donate LE, et al. Molecular Evolution and Domain-Structure of Plasminogen-Related Growth-Factors (Hgf/Sf and Hgf1/Msp). Protein Sci. 1994;3(12):2378–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Kirchhofer D, et al. Structural and functional basis of the serine protease-like hepatocyte growth factor beta-chain in Met binding and signaling. J Biol Chem. 2004;279(38):39915–24.

    Article  PubMed  CAS  Google Scholar 

  54. Stamos J, et al. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J. 2004;23(12):2325–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Chirgadze DY, et al. Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nat Struct Biol. 1999;6(1):72–9.

    Article  PubMed  CAS  Google Scholar 

  56. Xu Y, et al. Receptor-type protein tyrosine phosphatase beta (RPTP-beta) directly dephosphorylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J Biol Chem. 2011;286(18):15980–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Sattler M, et al. The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther Adv Med Oncol. 2011;3(4):171–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Bladt F, et al. Essential role for the C-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature. 1995;376(6543):768–71.

    Article  PubMed  CAS  Google Scholar 

  59. Borowiak M, et al. Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A. 2004;101(29):10608–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Chmielowiec J, et al. c-Met is essential for wound healing in the skin. J Cell Biol. 2007;177(1):151–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Huang FI, et al. Hepatocyte growth factor activates Wnt pathway by transcriptional activation of LEF1 to facilitate tumor invasion. Carcinogenesis. 2012;33(6):1142–8.

    Article  PubMed  CAS  Google Scholar 

  62. Huh CG, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101(13):4477–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Kim CH, et al. c-MET expression as an indicator of survival outcome in patients with oral tongue carcinoma. Head neck-J Sci Spec. 2010;32(12):1655–64.

    Google Scholar 

  64. Weidner KM, et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature. 1996;384(6605):173–6.

    Article  PubMed  CAS  Google Scholar 

  65. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.

    Article  PubMed  CAS  Google Scholar 

  66. Grotegut S, et al. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J. 2006;25(15):3534–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Dong G, et al. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 2001;61(15):5911–8.

    PubMed  CAS  Google Scholar 

  68. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735–41.

    Article  PubMed  CAS  Google Scholar 

  69. Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer. 2010;46(7):1260–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Miyamoto M, et al. Prognostic significance of overexpression of c-Met oncoprotein in cholangiocarcinoma. Br J Cancer. 2011;105(1):131–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Sierra J. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol. 2011;3(S1):S21–35.

    Article  CAS  Google Scholar 

  72. Ma PC, et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22(4):309–25.

    Article  PubMed  CAS  Google Scholar 

  73. Mehra R, et al. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ERBB family-targeted therapies in head and neck cancer. Drug Resist Updat. 2011;14(6):260–79.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Hayes DN, Grandis J, El-Naggar AK. Comprehensive genomic characterization of squamous cell carcinoma of the head and neck in the Cancer Genome Atlas in AACR Annual Meeting 2013, AACR: Washington, DC.

    Google Scholar 

  75. Bandla S, et al. Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma. Ann Thorac Surg. 2012;93(4):1101–6.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Gao JJ, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci Signal. 2013;6(269).

    Google Scholar 

  77. Akervall J, et al. Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer Res. 2004;10(24):8204–13.

    Article  PubMed  CAS  Google Scholar 

  78. Tyner JW, et al. MET receptor sequence variants R970C and T992I lack transforming capacity. Cancer Res. 2010;70(15):6233–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Tengs T, et al. A transforming MET mutation discovered in non-small cell lung cancer using microarray-based resequencing. Cancer Lett. 2006;239(2):227–33.

    Article  PubMed  CAS  Google Scholar 

  80. Lengyel E, Sawada K, Salgia R. Tyrosine kinase mutations in human cancer. Curr Mol Med. 2007;7(1):77–84.

    Article  PubMed  CAS  Google Scholar 

  81. Schmidt L, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  82. Di Renzo MF, et al. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene. 2000;19(12):1547–55.

    Article  PubMed  CAS  Google Scholar 

  83. Dulak AM, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478–U37.

    Article  PubMed  CAS  Google Scholar 

  84. Argiris A, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31(11):1405–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ma PC, et al. c-MET mutational analysis in small cell lung cancer: Novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.

    PubMed  CAS  Google Scholar 

  86. Ma PC, et al. Functional expression and mutations of c-met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65(4):1479–88.

    Article  PubMed  CAS  Google Scholar 

  87. Ortiz-Padilla C, et al. Functional characterization of cancer-associated Gab1 mutations. Oncogene. 2013;32(21):2696–702.

    Article  PubMed  CAS  Google Scholar 

  88. Sonnenberg E, et al. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993;123(1):223–35.

    Article  PubMed  CAS  Google Scholar 

  89. Takeuchi S, et al. Dual inhibition of met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Am J Pathol. 2012;181(3):1034–43.

    Article  PubMed  CAS  Google Scholar 

  90. Straussman R, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–U118.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Turke AB, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17(1):77–88.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Garofalo M, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2012;18(1):74–82.

    CAS  Google Scholar 

  93. Stabile LP, et al. c-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res. 2013;19(2):380–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Guo A, et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad Sci U S A. 2008;105(2):692–7.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Dulak AM, et al. HGF-independent potentiation of EGFR action by c-Met. Oncogene. 2011;30(33):3625–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Tang Z, et al. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99(6):911–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Bonine-Summers AR, et al. Epidermal growth factor receptor plays a significant role in hepatocyte growth factor mediated biological responses in mammary epithelial cells. Cancer Biol Ther. 2007;6(4):561–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Khoury H, et al. HGF converts ERBB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell. 2005;16(2):550–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Chen CT, et al. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol Cancer Ther. 2012;11(3):660–9.

    Article  PubMed  CAS  Google Scholar 

  100. Engelman JA, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  PubMed  CAS  Google Scholar 

  101. Schoeberl B, et al. An ERBB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 2010;70(6):2485–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Meetze K, et al. The anti-tumor activity of the ERBB3 inhibitory antibody AV-203 in patient derived tumor explant models. Eur J Cancer. 2012;48:126.

    Article  Google Scholar 

  103. Vermorken JB, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25(16):2171–7.

    Article  PubMed  CAS  Google Scholar 

  104. Soulieres D, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  105. Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Brennan DJ, et al. Antibody-based proteomics: fast-tracking molecular diagnostics in oncology. Nat Rev Cancer. 2010;10(9):605–17.

    Article  PubMed  CAS  Google Scholar 

  107. Sen B, et al. Distinct interactions between c-Src and c-Met in mediating resistance to c-Src inhibition in head and neck cancer. Clin Cancer Res. 2011;17(3):514–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Mandal M, et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer. 2008;112(9):2088–100.

    Article  PubMed  CAS  Google Scholar 

  109. Singleton KR, et al. A receptor tyrosine kinase network composed of fibroblast growth factor receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and neck squamous carcinoma cell lines. Mol Pharmacol. 2013;83(4):882–93.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Nakamura Y, et al. Constitutive activation of c-Met is correlated with c-Met overexpression and dependent on cell-matrix adhesion in lung adenocarcinoma cell lines. Cancer Sci. 2008;99(1):14–22.

    PubMed  CAS  Google Scholar 

  111. Chen SY, Chen HC. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Mol Cell Biol. 2006;26(13):5155–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Wang R, Kobayashi R, Bishop JM. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A. 1996;93(16):8425–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Orian-Rousseau W, et al. Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-Actin. Mol Biol Cell. 2007;18(1):76–83.

    CAS  Google Scholar 

  114. Matzke A, et al. Haploinsufficiency of c-met in cd44(-/-) mice identifies a collaboration of CD44 and c-met in vivo. Mol Cell Biol. 2007;27(24):8797–806.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Orian-Rousseau V, et al. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev. 2002;16(23):3074–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Lin YM, et al. Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway. PLoS One. 2012;7(11):e50924.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Eder JP, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res. 2009;15(7):2207–14.

    Article  PubMed  CAS  Google Scholar 

  118. Sulpice E, et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol Cell. 2009;101(9):525–39.

    Article  PubMed  CAS  Google Scholar 

  119. Xin XH, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol. 2001;158(3):1111–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Bean J, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104(52):20932–7.

    Article  PubMed Central  PubMed  Google Scholar 

  121. Dufies M, et al. Mechanism of action of the multikinase inhibitor Foretinib. Cell Cycle. 2011;10(23):4138–48.

    Article  PubMed  CAS  Google Scholar 

  122. Xu L, et al. Combined EGFR/MET or EGFR/HSP90 Inhibition Is Effective in the Treatment of Lung Cancers Codriven by Mutant EGFR Containing T790M and MET. Cancer Res. 2012;72(13):3302–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Michieli P, Di Nicolantonio F. Targeted therapies: tivantinib-a cytotoxic drug in MET inhibitor’s clothes? Nat Rev Clin Oncol. 2013.

    Google Scholar 

  124. Scagliotti GV, et al. Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer. 2012;13(5):391–5.

    Article  PubMed  CAS  Google Scholar 

  125. Basilico C, et al. Tivantinib (ARQ197) Displays Cytotoxic Activity That Is Independent of Its Ability to Bind MET. Clin Cancer Res. 2013;19(9):2381–92.

    Article  PubMed  CAS  Google Scholar 

  126. Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology. Cancer Treat Rev. 2013.

    Google Scholar 

  127. Ou SH, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol. 2011;6(5):942–6.

    Article  PubMed  Google Scholar 

  128. Penuel J, Smith JC, Shen SQ. Integer programming models and algorithms for the graph decontamination problem with mobile agents. Networks. 2013;61(1):1–19.

    Article  Google Scholar 

  129. Zeng W, et al. Abstract 2734: c-Met antibody LY2875358 (LA480) shows differential antitumor effects in non-small cell lung cancer. Cancer Res. 2012;72(8).

    Google Scholar 

  130. D’Arcangelo M, Cappuzzo F. Focus on the potential role of ficlatuzumab in the treatment of non-small cell lung cancer. Biologics. 2013;7:61–8.

    PubMed Central  PubMed  Google Scholar 

  131. Ryan CJ, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res. 2013;19(1):215–24.

    Article  PubMed  CAS  Google Scholar 

  132. Okamoto W, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor, reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer with an EGFR mutation. Mol Cancer Ther. 2010;9(10):2785–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  133. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91.

    Article  PubMed  Google Scholar 

  134. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.

    Article  PubMed  Google Scholar 

  135. Spigel DR, et al. Treatment rationale study design for the MetLung trial: a randomized, double-blind phase III study of Onartuzumab (MetMAb) in combination with erlotinib versus erlotinib alone in patients who have received standard chemotherapy for stage IIIB or IV met-positive non-small-Cell Lung Cancer. Clin Lung Cancer. 2012;13(6):500–4.

    Article  PubMed  CAS  Google Scholar 

  136. Spigel D, et al. Final efficacy results from OAM4558 g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol. 2011;29(15 (Supplemental; abstr 7505)).

    Google Scholar 

  137. Xie Q, et al. Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma. Proc Natl Acad Sci U S A. 2012;109(2):570–5.

    Article  PubMed Central  PubMed  Google Scholar 

  138. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncology. 2009;10(7):709–17.

    Article  CAS  Google Scholar 

  139. Stamos J, et al. Crystal structure of the HGF beta-chain in complex with the Sema domain of the met receptor. EMBO J. 2004;23(12):2325–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463–75.

    Article  PubMed  CAS  Google Scholar 

  141. Yamamoto H, Toyooka S, Mitsudomi T. Impact of EGFR mutation analysis in non-small cell lung cancer. Lung Cancer. 2009;63(3):315–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanguy Y. Seiwert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seiwert, T., Beck, T., Salgia, R. (2014). The Role of HGF/c-MET in Head and Neck Squamous Cell Carcinoma. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8815-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8815-6_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8814-9

  • Online ISBN: 978-1-4614-8815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics