Skip to main content

The Future of Robotic Platforms

  • Chapter
  • First Online:
Book cover Robotics in General Surgery

Abstract

Robotic systems have been developed and improved over the last two decades to address the limitations of minimal access surgery, which include a lack of haptic feedback and loss of dexterity (degrees of freedom), and although major improvements have been made since the initial robotic systems, challenges with size and the number of cost-effective clinical applications available continue to exist. As the use of surgical robotics increases, the requirements for improved capabilities become apparent.

Future surgical robotic systems will add integrated imaging and navigation and enhanced haptic and sensory capabilities, providing for more targeted treatment with versatile application. Progress in research and design will reduce the size and cost of current robotic platforms, allowing for more cost-effective application in all surgical subspecialties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuchs KH. Minimally invasive surgery. Endoscopy. 2002;34:154–9.

    Article  CAS  PubMed  Google Scholar 

  2. Allendorf JD, Bessler M, Whelan RL, et al. Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc. 1997;11:427–30.

    Article  CAS  PubMed  Google Scholar 

  3. Gerhardus D. Robot-assisted surgery: the future is here. J Healthc Manag. 2003;48(4):242–51.

    PubMed  Google Scholar 

  4. Retrieved from http://www.boxchronicles.com/index.php?id=thousands/davinci. The box Chronicles: great moment in technology history: da Vinci Surgical System.

  5. Jayne DG, Culmer PR, Barrie J, Hewson R, Neville A. Robotic platforms for general and colorectal surgery. Colorectal Dis. 2011;13 Suppl 7:78–82.

    Article  PubMed  Google Scholar 

  6. Kuchenbecker KJ, Gewirtz J, McMahan W et al. VerroTouch: high-frequency acceleration feedback for telerobotic surgery, haptics: generating and perceiving tangible sensations. In: Proceedings of the EuroHaptics, Part I. Spring; July 2010. p. 189–96.

    Google Scholar 

  7. Retrieved from http://www.titanmedicalinc.com.

  8. Rippel R. Surgical robotic systems. MetTube Medical jounal. July 14, 2012. Retrieved from http://medtube.net/tribune/surgical-robotic-systems/.

  9. Beasley RA. Medical robots: current systems and research directions. J Robot. 2012:1–14.

    Google Scholar 

  10. Stark M, Benhidjeb T, Gidaro S, Morales E. The future of telesurgery: a universal system with haptic sensation. J Turkish-German Gynecol Assoc. 2012; 13(1):74–6.

    Article  Google Scholar 

  11. Retrieved from http://surgrob.blogspot.ca/2012/01/alf-x-telelap-getting-commercial.html.

  12. Tobergte AHP, Hagn U, Rouiller P, Thielmann S, Grange S, Albu-Schäffer A, Conti F, Hirzinger G. The sigma.7 haptic interface for MiroSurge: a new bi-manual surgical console. In: Proceedings of IROS; 2011. p. 3023–3030.

    Google Scholar 

  13. Eindhoven University of Technology (2010, September 29). Better surgery with new surgical robot with force feedback. ScienceDaily.

    Google Scholar 

  14. Retrieved from http://news.cnet.com/8301-17938_105-57362450-1/paging-raven-ii-the-open-source-surgery-robot/.

  15. Retrieved from http://brl.ee.washington.edu/~hawkeye1/documents/r2fs.pdf.

  16. Simorov A, Otte RS, Kopietz CM, Oleynikov D. Review of surgical robotics user interface: what is the best way to control robotic surgery? Surg Endosc. 2012;26(8):2117–25.

    Article  PubMed  Google Scholar 

  17. Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K. Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg. 2013;118:521–9.

    Article  PubMed  Google Scholar 

  18. Retrieved from http://www.imris.com/product/evolution-symbis.

  19. Nawrat Z. State of the art in medical robotics in Poland: development of the Robin Heart and other robots. Expert Rev Med Devices. 2012;9(4):353–9.

    Article  CAS  PubMed  Google Scholar 

  20. Podsedkowski L. RobIn Heart 0, 1, and 3 – mechanical construction development. Bull Pol Acad Sci Tech Sci. 2005;53(1):79–85.

    Google Scholar 

  21. Autorino R, Kaouk JH, Stolzenburg JU, Gill IS, Mottrie A, Tewari A, Cadeddu JA. Current status and future directions of robotic single-site surgery: a systematic review. Eur Urol. 2013;63:266–80.

    Article  PubMed  Google Scholar 

  22. Tiwari MM, Reynoso JF, Lehman AC, Tsang AW, Farritor SM, Oleynikov D. In vivo miniature robots for natural orifice surgery: state of the art and future perspectives. World J Gastrointest Surg. 2010; 2(6):217–23.

    Article  PubMed  Google Scholar 

  23. Phee SJ, Ho KY, Lomanto D, Low SC, Huynh VA, Kencana AP, Yang K, Sun ZL, Chung SC. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER). Surg Endosc. 2010; 24(9):2293–8.

    Article  CAS  PubMed  Google Scholar 

  24. Phee SJ, Low SC, Huynh VA, Kencana AP, Sun ZL, Yang K. Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES). Conf Proc IEEE Eng Med Biol Soc. 2009;2009:1192–5.

    CAS  PubMed  Google Scholar 

  25. Ho K. Robotics in gastrointestinal endoscopy. J Dig Endosc. 2012;3:74–6.

    Article  Google Scholar 

  26. Eisenberg D, Storne E, Belson A. Use of a flexible robotic transgastric natural orifice translumenal endoscopic surgery (NOTES) platform in a cadaver to test access, navigation, maneuverability, and stability. Surg Endosc. 2010;24(9):2323.

    Article  PubMed  Google Scholar 

  27. Felice C, Emanuele T, Giovanni RP, Antonella R, Roberta B, Antonella T, Philipp EC. Robotic colonoscopy. In: Paul Miskovitz, editors. Colonoscopy. InTech; 2011. ISBN: 978-953-307-568-6. Available from http://www.intechopen.com/books/colonoscopy/robotic-colonoscopy.

  28. Retrieved from http://www.endocontrol-medical.com/viky_ep.php.

  29. Mozer P, Troccaz J, Stoianovici D. Urologic robots and future directions. Curr Opin Urol. 2009;19(1): 114–9. Review.

    Article  PubMed  Google Scholar 

  30. Ukimura O, Gills IS. Image-fusion, augmented reality and predictive surgical navigation. Urol Clin North Am. 2009;36:115–23.

    Article  PubMed  Google Scholar 

  31. ClinicalTrials.gov. A service of the United States National Institute of Health. Clinical Trial Identifiers: NCT01281488: Fluorescence imaging in finding tumors in patients with kidney tumors. Accessed 18 July 2012. http://clinicaltrials.gov/ct2/show/NCT01281488?term=NCT01281488&rank=1.

    Google Scholar 

  32. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot. 2011;7(4): 375–92.

    Article  CAS  PubMed  Google Scholar 

  33. Dieterich S, Gibbs IC. The CyberKnife in clinical use: current roles, future expectations. Front Radiat Ther Oncol. 2011;43:181–94. Epub 2011 May 20. Review.

    Article  PubMed  Google Scholar 

  34. Stüer C, Ringel F, Stoffel M, Reinke A, Behr M, Meyer B. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl. 2011;109:241–5.

    Article  PubMed  Google Scholar 

  35. Retrieved from http://www.mazorrobotics.com/.

  36. Pearle AD, O’Loughlin PF, Kendoff DO. Robot-assisted unicompartmental knee arthroplasty. J Arthroplasty. 2010;25(2):230–7.

    Article  PubMed  Google Scholar 

  37. Lewin JS, Nour SG, Duerk JL. Magnetic resonance image-guided biopsy and aspiration. Magn Reson Imaging. 2000;11(3):173–83.

    Article  CAS  Google Scholar 

  38. Lewin JS, Duerk JL, Jain VR, Petersilge CA, Chao CP, Haaga JR. Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. AJR Am J Roentgenol. 1996;166(6):1337–45.

    Article  CAS  PubMed  Google Scholar 

  39. Melzer A, Gutmann B, Remmele T, Wolf R, Lukoscheck A, Bock M, Bardenheuer H, Fischer H. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag. 2008;27(3):66–73.

    Article  PubMed  Google Scholar 

  40. Xiao A, Li M, Melzer A. Positioning of focused ultrasound transducer using MR compatible robotic arm (Abstract). San Antonio, TX: SAGES; 2011.

    Google Scholar 

  41. Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Schar M, Patriciu A. “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16(4):241–8. Erratum in: Minim Invasive Ther Allied Technol. 2007; 16(6):370.

    Article  PubMed  Google Scholar 

  42. Stoianovici D, Song DY, Petrisor D, Mozer P, Armour E, Vigaru B, Muntener M, Patriciu A, Schar M. MRI compatible pneumatic robot MrBot for prostate brachytherapy: preclinical assessment of accuracy and execution of dosimetric plans. Int J Radiat Oncol Biol Phys. 2008;72(1):306–7.

    Article  Google Scholar 

  43. Pfleiderer SO, Marx C, Vagner J, Franke RP, Reichenbach JR, Kaiser WA. Magnetic resonance-guided large-core breast biopsy inside a 1.5-T magnetic resonance scanner using an automatic system: in vitro experiments and preliminary clinical experience in four patients. Invest Radiol. 2005;40(7):458–63.

    Article  PubMed  Google Scholar 

  44. Fisher LR, Hasler WL. New vision in video capsule endoscopy: current status and future directions. Nat Rev Gastroenterol Hepatol. 2012;9:392–405.

    Article  PubMed  Google Scholar 

  45. Wortman TD, Strabala KW, Lehman AC, Farritor SM, Oleynikov D. Laparoendoscopic single-site surgery using a multifunctional miniature in vivo robot. Int J Med Robot. 2011;7(1):17–21.

    Article  PubMed  Google Scholar 

  46. Petroni G, Niccolini M, Caccavaro S, Quaglia C, Menciassi A, Schostek S, Basili G, Goletti O, Schurr MO, Dario P. A novel robotic system for single-port laparoscopic surgery: preliminary experience. Surg Endosc. 2013;27:1932–7.

    Article  CAS  PubMed  Google Scholar 

  47. Dolghi O, Strabala KW, Wortman TD, Goede MR, Farritor SM, Oleynikov D. Miniature in vivo robot for laparoendoscopic single-site surgery. Surg Endosc. 2011;25(10):3453–8.

    Article  PubMed  Google Scholar 

  48. Sekiguchi Y, Kobayashi Y, Watanabe H, Tomono Y, Noguchi T, Takahashi Y, Toyoda K, Uemura M, Ieiri S, Ohdaira T, Tomikawa M, Hashizume M, Fujie MG. In vivo experiments of a surgical robot with vision field control for single port endoscopic surgery. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:7045–8.

    PubMed  Google Scholar 

  49. Retrieved from http://engineering.columbia.edu/using-robots-less-invasive-surgery.

  50. Peirs J, Reynaerts D, Van Brussel H. Design of miniature parallel manipulators for integration on a self-propelling endoscope. Sens Actuators A: Phys. 2000;85(1):409–17.

    Article  CAS  Google Scholar 

  51. Zuo J, Yan G, Gao Z. A micro creeping robot for colonoscopy based on the earthworm. J Med Eng Technol. 2005;29(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  52. Patronik NA, Ota T, Zenati MA, Riviere CN. A miniature mobile robot for navigation and positioning on the beating heart. IEEE Trans Robot. 2009;25(5): 1109–24.

    Article  PubMed  Google Scholar 

  53. Raman JD, Bergs RA, Fernandez R, Bagrodia A, Scott DJ, Tang SJ, Pearle MS, Cadeddu JA. Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation. J Endourol. 2009;23(3): 367–71.

    Article  PubMed  Google Scholar 

  54. Scott DJ, Tang SJ, Fernandez R, Bergs R, Goova MT, Zeltser I, Kehdy FJ, Cadeddu JA. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surg Endosc. 2007; 21(12):2308–16.

    Article  PubMed  Google Scholar 

  55. Petroni G, Niccolini M, Menciassi A, Dario P, Cuschieri A. A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc. 2013;27:665–70.

    Article  PubMed  Google Scholar 

  56. Canes D, Lehman AC, Farritor SM, Oleynikov D, Desai MM. The future of NOTES instrumentation: flexible robotics and in vivo minirobots. J Endourol. 2009;23(5):787–92.

    Article  PubMed  Google Scholar 

  57. Dario P, Carrozza MC, Pietrabissa A. Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy. Comput Aided Surg. 1999;4(1):1–14.

    CAS  PubMed  Google Scholar 

  58. Wang KD, Yan GZ. An earthworm-like microrobot for colonoscopy. Biomed Instrum Technol. 2006; 40(6):471–8.

    Article  CAS  PubMed  Google Scholar 

  59. Pan G, Wang L. Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol Res Pract. 2012;2012:841691.

    PubMed  Google Scholar 

  60. Patel GM, Patel GC, Patel RB, Patel JK, Patel M. Nanorobot: a versatile tool in nanomedicine. J Drug Target. 2006;14(2):63–7.

    Article  CAS  PubMed  Google Scholar 

  61. Hill C, Amodeo A, Joseph JV, Patel HR. Nano- and microrobotics: how far is the reality? Expert Rev Anticancer Ther. 2008;8(12):1891–7.

    Article  PubMed  Google Scholar 

  62. Hafeli U, Schutt W, Teller J, Zborowski M. Scientific and clinical applications of magnetic carriers. New York, NY: Plenum; 1997.

    Book  Google Scholar 

  63. Holligan DL, Gilles GT, Dailey JP. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. IOP Nanotechnol. 2003;14:661–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

 The author wishes to acknowledge the significant contribution of Ruth Breau in the preparation of this chapter.

Conflict of Interest

This work was not externally funded; the author has not received any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Anvari M.B.B.S., Ph.D., F.R.C.S., F.A.C.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anvari, M. (2014). The Future of Robotic Platforms. In: Kim, K. (eds) Robotics in General Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8739-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8739-5_38

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8738-8

  • Online ISBN: 978-1-4614-8739-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics