Skip to main content

Physiological Pathways of PAD Activation and Citrullinated Epitope Generation

  • Chapter
  • First Online:
Protein Deimination in Human Health and Disease

Abstract

The peptidylarginine deiminase (PAD) enzymes hydrolyze arginine residues to create the nonnative amino acid citrulline (a process called citrullination or deimination). Five PAD enzymes (1, 2, 3, 4, 6) have been identified, and they exhibit fairly restricted tissue expression patterns. The conversion of arginine to citrulline (referred to as citrullination or deimination) results in only a small change in molecular mass (less than 1 Da) and a loss in a positive charge, which can have dramatic consequences on protein structure and protein–protein interactions. Since citrullination can lead to profound changes in protein function, it is not surprising that citrullination and the activity of the PAD enzymes has been implicated in many diseases, such as rheumatoid arthritis (RA), multiple sclerosis, Alzheimer’s disease, inflammatory bowel disease, psoriasis, and cancer. This chapter provides a general overview of the PAD enzymes and their known functions. Plasma and synovial biopsy specimen from patients with rheumatoid arthritis contain high levels of citrullinated proteins, and, in fact, rheumatoid patients often develop immune reactivity to citrullinated proteins. Here, we also discuss possible physiological pathways that may contribute to the generation of citrullinated self-antigens, which could then prime the development of anti-citrulline peptide autoantibodies in rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Sakurai Y, Asou H, Senshu T (1999) Localization of peptidylarginine deiminase type II in a stage-specific immature oligodendrocyte from rat cerebral hemisphere. Neurosci Lett 274(1):53–55

    PubMed  CAS  Google Scholar 

  • Andrade F, Darrah E, Gucek M, Cole RN, Rosen A, Zhu X (2010) Autocitrullination of human peptidylarginine deiminase 4 regulates protein citrullination during cell activation. Arthritis Rheum 62(6):1630–1640

    PubMed  CAS  Google Scholar 

  • Anzilotti C, Pratesi F, Tommasi C, Migliorini P (2010) Peptidylarginine deiminase 4 and citrullination in health and disease. Autoimmun Rev 9(3):158–160

    PubMed  CAS  Google Scholar 

  • Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M (2004) Structural basis for Ca(2+)-induced activation of human PAD4. Nat Struct Mol Biol 11(8):777–783

    PubMed  CAS  Google Scholar 

  • Asaga H, Nakashima K, Senshu T, Ishigami A, Yamada M (2001) Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J Leukoc Biol 70(1):46–51

    PubMed  CAS  Google Scholar 

  • Asaga H, Akiyama K, Ohsawa T, Ishigami A (2002) Increased and type II-specific expression of peptidylarginine deiminase in activated microglia but not hyperplastic astrocytes following kainic acid-evoked neurodegeneration in the rat brain. Neurosci Lett 326(2):129–132

    PubMed  CAS  Google Scholar 

  • Balandraud N, Gouret P, Danchin EG, Blanc M, Zinn D, Roudier J et al (2005) A rigorous method for multigenic families’ functional annotation: the peptidyl arginine deiminase (PADs) proteins family example. BMC Genomics 6:153

    PubMed  CAS  Google Scholar 

  • Bedford MT (2007) Arginine methylation at a glance. J Cell Sci 120(Pt 24):4243–4246

    PubMed  CAS  Google Scholar 

  • Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5(8):577–582

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    PubMed  CAS  Google Scholar 

  • Buono C, Binder CJ, Stavrakis G, Witztum JL, Lichtman AH (2005) T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A 102:1596–1601

    PubMed  CAS  Google Scholar 

  • Chang X, Han J (2006) Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45(3):183–196

    PubMed  CAS  Google Scholar 

  • Chang X, Yamada R, Suzuki A, Sawada T, Yoshino S, Tokuhiro S et al (2005) Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford) 44(1):40–50

    CAS  Google Scholar 

  • Chavanas S, Mechin MC, Takahara H, Kawada A, Nachat R, Serre G et al (2004) Comparative analysis of the mouse and human peptidylarginine deiminase gene clusters reveals highly conserved non-coding segments and a new human gene, PADI6. Gene 330:19–27

    PubMed  CAS  Google Scholar 

  • Chavanas S, Mechin MC, Nachat R, Adoue V, Coudane F, Serre G et al (2006) Peptidylarginine deiminases and deimination in biology and pathology: relevance to skin homeostasis. J Dermatol Sci 44(2):63–72

    PubMed  CAS  Google Scholar 

  • Chen K, Nishi H, Travers R, Tsuboi N, Martinod K, Wagner DD et al (2012) Endocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivo. Blood 120:4421–4431

    PubMed  CAS  Google Scholar 

  • Cherrington BD, Zhang X, McElwee JL, Morency E, Anguish LJ, Coonrod SA (2012) Potential role for PAD2 in gene regulation in breast cancer cells. PLoS One 7(7):e41242

    PubMed  CAS  Google Scholar 

  • Choi M, Lee OH, Jeon S, Park M, Lee DR, Ko JJ et al (2010) The oocyte-specific transcription factor, Nobox, regulates the expression of Pad6, a peptidylarginine deiminase in the oocyte. FEBS Lett 584(16):3629–3634

    PubMed  CAS  Google Scholar 

  • Chumanevich AA, Causey CP, Knuckley BA, Jones JE, Poudyal D, Chumanevich AP et al (2011) Suppression of colitis in mice by Cl-amidine: a novel peptidylarginine deiminase inhibitor. Am J Physiol Gastrointest Liver Physiol 300(6):G929–G938

    PubMed  CAS  Google Scholar 

  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    PubMed  CAS  Google Scholar 

  • Crane-Robinson C, Dragan AI, Privalov PL (2006) The extended arms of DNA-binding domains: a tale of tails. Trends Biochem Sci 31(10):547–552

    PubMed  CAS  Google Scholar 

  • Curis E, Nicolis I, Moinard C, Osowska S, Zerrouk N, Benazeth S et al (2005) Almost all about citrulline in mammals. Amino Acids 29(3):177–205

    PubMed  CAS  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M et al (2004) Histone deimination antagonizes arginine methylation. Cell 118(5):545–553

    PubMed  CAS  Google Scholar 

  • Darrah E, Rosen A, Giles JT, Andrade F (2012) Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann Rheum Dis 71(1):92–98

    PubMed  CAS  Google Scholar 

  • Denis H, Deplus R, Putmans P, Yamada M, Metivier R, Fuks F (2009) Functional connection between deimination and deacetylation of histones. Mol Cell Biol 29(18):4982–4993

    PubMed  CAS  Google Scholar 

  • Dong S, Kojima T, Shiraiwa M, Mechin MC, Chavanas S, Serre G et al (2005) Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors. J Invest Dermatol 124(5):1026–1033

    PubMed  CAS  Google Scholar 

  • Dong S, Kanno T, Yamaki A, Kojima T, Shiraiwa M, Kawada A et al (2006) NF-Y and Sp1/Sp3 are involved in the transcriptional regulation of the peptidylarginine deiminase type III gene (PADI3) in human keratinocytes. Biochem J 397(3):449–459

    PubMed  CAS  Google Scholar 

  • Dong S, Zhang Z, Takahara H (2007) Estrogen-enhanced peptidylarginine deiminase type IV gene (PADI4) expression in MCF-7 cells is mediated by estrogen receptor-alpha-promoted transfactors activator protein-1, nuclear factor-Y, and Sp1. Mol Endocrinol 21(7):1617–1629

    PubMed  CAS  Google Scholar 

  • Dong S, Ying S, Kojima T, Shiraiwa M, Kawada A, Mechin MC et al (2008) Crucial roles of MZF1 and Sp1 in the transcriptional regulation of the peptidylarginine deiminase type I gene (PADI1) in human keratinocytes. J Invest Dermatol 128(3):549–557

    PubMed  CAS  Google Scholar 

  • Doyle HA, Mamula MJ (2012) Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr Opin Immunol 24(1):112–118

    PubMed  CAS  Google Scholar 

  • Dwivedi N, Upadhyay J, Neeli I, Khan S, Pattanaik D, Myers L et al (2012) Felty’s syndrome autoantibodies bind to deiminated histones and neutrophil extracellular traps. Arthritis Rheum 64(4):982–992

    PubMed  CAS  Google Scholar 

  • Ermert D, Urban CF, Laube B, Goosmann C, Zychlinsky A, Brinkmann V (2009) Mouse neutrophil extracellular traps in microbial infections. J Innate Immun 1(3):181–193

    PubMed  CAS  Google Scholar 

  • Esposito G, Vitale AM, Leijten FP, Strik AM, Koonen-Reemst AM, Yurttas P et al (2007) Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol 273(1–2):25–31

    PubMed  CAS  Google Scholar 

  • Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7(9):690–702

    PubMed  CAS  Google Scholar 

  • Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361

    PubMed  CAS  Google Scholar 

  • Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7(5):355–366

    PubMed  CAS  Google Scholar 

  • Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R, Mechin MC et al (2007) Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum 56(11):3541–3553

    PubMed  CAS  Google Scholar 

  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    PubMed  CAS  Google Scholar 

  • Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z et al (2011) Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 3(73):73ra20

    PubMed  Google Scholar 

  • Guo Q, Bedford MT, Fast W (2011) Discovery of peptidylarginine deiminase-4 substrates by protein array: antagonistic citrullination and methylation of human ribosomal protein S2. Mol Biosyst 7(7):2286–2295

    PubMed  CAS  Google Scholar 

  • Gyorgy B, Toth E, Tarcsa E, Falus A, Buzas EI (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38(10):1662–1677

    PubMed  Google Scholar 

  • Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 107(21):9813–9818

    PubMed  CAS  Google Scholar 

  • Hao G, Wang D, Gu J, Shen Q, Gross SS, Wang Y (2009) Neutral loss of isocyanic acid in peptide CID spectra: a novel diagnostic marker for mass spectrometric identification of protein citrullination. J Am Soc Mass Spectrom 20(4):723–727

    PubMed  CAS  Google Scholar 

  • Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122(5):1791–1802

    PubMed  CAS  Google Scholar 

  • Hemmers S, Teijaro JR, Arandjelovic S, Mowen KA (2011) PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One 6(7):e22043

    PubMed  CAS  Google Scholar 

  • Hidaka Y, Hagiwara T, Yamada M (2005) Methylation of the guanidino group of arginine residues prevents citrullination by peptidylarginine deiminase IV. FEBS Lett 579(19):4088–4092

    PubMed  CAS  Google Scholar 

  • Horibata S, Coonrod SA, Cherrington BD (2012) Role for peptidylarginine deiminase enzymes in disease and female reproduction. J Reprod Dev 58(3):274–282

    PubMed  CAS  Google Scholar 

  • Ireland JM, Unanue ER (2011) Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J Exp Med 208(13):2625–2632

    PubMed  CAS  Google Scholar 

  • Ireland J, Herzog J, Unanue ER (2006) Cutting edge: unique T cells that recognize citrullinated peptides are a feature of protein immunization. J Immunol 177(3):1421–1425

    PubMed  CAS  Google Scholar 

  • Ishida-Yamamoto A, Senshu T, Takahashi H, Akiyama K, Nomura K, Iizuka H (2000) Decreased deiminated keratin K1 in psoriatic hyperproliferative epidermis. J Invest Dermatol 114(4):701–705

    PubMed  CAS  Google Scholar 

  • Johnsen AK, Valdar W, Golden L, Ortiz-Lopez A, Hitzemann R, Flint J et al (2011) Genome-wide and species-wide dissection of the genetics of arthritis severity in heterogeneous stock mice. Arthritis Rheum 63(9):2630–2640

    PubMed  CAS  Google Scholar 

  • Jones JE, Causey CP, Knuckley B, Slack-Noyes JL, Thompson PR (2009) Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr Opin Drug Discov Devel 12(5):616–627

    PubMed  CAS  Google Scholar 

  • Kamata Y, Taniguchi A, Yamamoto M, Nomura J, Ishihara K, Takahara H et al (2009) Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J Biol Chem 284(19):12829–12836

    PubMed  CAS  Google Scholar 

  • Kamata Y, Yamamoto M, Kawakami F, Tsuboi R, Takeda A, Ishihara K et al (2011) Bleomycin hydrolase is regulated biphasically in a differentiation- and cytokine-dependent manner: relevance to atopic dermatitis. J Biol Chem 286(10):8204–8212

    PubMed  CAS  Google Scholar 

  • Kan R, Yurttas P, Kim B, Jin M, Wo L, Lee B et al (2011) Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol 350(2):311–322

    PubMed  CAS  Google Scholar 

  • Kearney PL, Bhatia M, Jones NG, Yuan L, Glascock MC, Catchings KL et al (2005) Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. Biochemistry 44(31):10570–10582

    PubMed  CAS  Google Scholar 

  • Keilhoff G, Prell T, Langnaese K, Mawrin C, Simon M, Fansa H et al (2008) Expression pattern of peptidylarginine deiminase in rat and human Schwann cells. Dev Neurobiol 68(1):101–114

    PubMed  CAS  Google Scholar 

  • Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z et al (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15(6):623–625

    PubMed  CAS  Google Scholar 

  • Kidd BA, Ho PP, Sharpe O, Zhao X, Tomooka BH, Kanter JL et al (2008) Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res Ther 10(5):R119

    PubMed  Google Scholar 

  • Kinloch A, Lundberg K, Wait R, Wegner N, Lim NH, Zendman AJ et al (2008) Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum 58(8):2287–2295

    PubMed  CAS  Google Scholar 

  • Klareskog L, Ronnelid J, Lundberg K, Padyukov L, Alfredsson L (2008) Immunity to citrullinated proteins in rheumatoid arthritis. Annu Rev Immunol 26:651–675

    PubMed  CAS  Google Scholar 

  • Knuckley B, Bhatia M, Thompson PR (2007) Protein arginine deiminase 4: evidence for a reverse protonation mechanism. Biochemistry 46(22):6578–6587

    PubMed  CAS  Google Scholar 

  • Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87(5):811–822

    PubMed  CAS  Google Scholar 

  • Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S (2007) Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 113(1):50–87

    PubMed  CAS  Google Scholar 

  • Kuballa P, Nolte WM, Castoreno AB, Xavier RJ (2012) Autophagy and the immune system. Annu Rev Immunol 30:611–646

    PubMed  CAS  Google Scholar 

  • Kuhn KA, Kulik L, Tomooka B, Braschler KJ, Arend WP, Robinson WH et al (2006) Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116(4):961–973

    PubMed  CAS  Google Scholar 

  • Lee YH, Coonrod SA, Kraus WL, Jelinek MA, Stallcup MR (2005) Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A 102(10):3611–3616

    PubMed  CAS  Google Scholar 

  • Lee HJ, Joo M, Abdolrasulnia R, Young DG, Choi I, Ware LB et al (2010) Peptidylarginine deiminase 2 suppresses inhibitory {kappa}B kinase activity in lipopolysaccharide-stimulated RAW 264.7 macrophages. J Biol Chem 285(51):39655–39662

    PubMed  CAS  Google Scholar 

  • Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR et al (2008) Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28(15):4745–4758

    PubMed  CAS  Google Scholar 

  • Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862

    PubMed  CAS  Google Scholar 

  • Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR (2005) Proteomic analysis of human neutrophil granules. Mol Cell Proteomics 4(10):1503–1521

    PubMed  CAS  Google Scholar 

  • Lundberg K, Nijenhuis S, Vossenaar ER, Palmblad K, van Venrooij WJ, Klareskog L et al (2005) Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res Ther 7(3):R458–R467

    PubMed  CAS  Google Scholar 

  • Maccioni M, Zeder-Lutz G, Huang H, Ebel C, Gerber P, Hergueux J et al (2002) Arthritogenic monoclonal antibodies from K/B×N mice. J Exp Med 195(8):1071–1077

    PubMed  CAS  Google Scholar 

  • Makrygiannakis D, af Klint E, Lundberg IE, Lofberg R, Ulfgren AK, Klareskog L et al (2006) Citrullination is an inflammation-dependent process. Ann Rheum Dis 65(9):1219–1222

    PubMed  CAS  Google Scholar 

  • Manzenreiter R, Kienberger F, Marcos V, Schilcher K, Krautgartner WD, Obermayer A et al (2012) Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros 11(2):84–92

    PubMed  CAS  Google Scholar 

  • Marcos V, Zhou Z, Yildirim AO, Bohla A, Hector A, Vitkov L et al (2010) CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation. Nat Med 16(9):1018–1023

    PubMed  CAS  Google Scholar 

  • Matsumoto I, Staub A, Benoist C, Mathis D (1999) Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science 286(5445):1732–1735

    PubMed  CAS  Google Scholar 

  • Mechin MC, Sebbag M, Arnaud J, Nachat R, Foulquier C, Adoue V et al (2007) Update on peptidylarginine deiminases and deimination in skin physiology and severe human diseases. Int J Cosmet Sci 29(3):147–168

    PubMed  CAS  Google Scholar 

  • Mechin MC, Coudane F, Adoue V, Arnaud J, Duplan H, Charveron M et al (2010) Deimination is regulated at multiple levels including auto-deimination of peptidylarginine deiminases. Cell Mol Life Sci 67(9):1491–1503

    PubMed  CAS  Google Scholar 

  • Moscarello MA, Pritzker L, Mastronardi FG, Wood DD (2002) Peptidylarginine deiminase: a candidate factor in demyelinating disease. J Neurochem 81(2):335–343

    PubMed  CAS  Google Scholar 

  • Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R et al (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1(4–5):229–240

    PubMed  CAS  Google Scholar 

  • Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G et al (2005a) Peptidylarginine deiminase isoforms 1-3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 124(2):384–393

    PubMed  CAS  Google Scholar 

  • Nachat R, Mechin MC, Charveron M, Serre G, Constans J, Simon M (2005b) Peptidylarginine deiminase isoforms are differentially expressed in the anagen hair follicles and other human skin appendages. J Invest Dermatol 125(1):34–41

    PubMed  CAS  Google Scholar 

  • Nagata S, Senshu T (1990) Peptidylarginine deiminase in rat and mouse hemopoietic cells. Experientia 46(1):72–74

    PubMed  CAS  Google Scholar 

  • Nakashima K, Hagiwara T, Ishigami A, Nagata S, Asaga H, Kuramoto M et al (1999) Molecular characterization of peptidylarginine deiminase in HL-60 cells induced by retinoic acid and 1alpha,25-dihydroxyvitamin D(3). J Biol Chem 274(39):27786–27792

    PubMed  CAS  Google Scholar 

  • Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277(51):49562–49568

    PubMed  CAS  Google Scholar 

  • Nakayama-Hamada M, Suzuki A, Kubota K, Takazawa T, Ohsaka M, Kawaida R et al (2005) Comparison of enzymatic properties between hPADI2 and hPADI4. Biochem Biophys Res Commun 327(1):192–200

    PubMed  CAS  Google Scholar 

  • Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182

    PubMed  CAS  Google Scholar 

  • Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102

    PubMed  CAS  Google Scholar 

  • Neeli I, Khan SN, Radic M (2008) Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol 180(3):1895–1902

    PubMed  CAS  Google Scholar 

  • Neeli I, Dwivedi N, Khan S, Radic M (2009) Regulation of extracellular chromatin release from neutrophils. J Innate Immun 1(3):194–201

    PubMed  CAS  Google Scholar 

  • Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW (2004) Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 473(1):128–136

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47

    PubMed  CAS  Google Scholar 

  • Nishikawa K, Toker A, Johannes FJ, Songyang Z, Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272(2):952–960

    PubMed  CAS  Google Scholar 

  • Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38(4):441–446

    PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Staab D, Zychlinsky A (2011) Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy. PLoS One 6(12):e28526

    PubMed  CAS  Google Scholar 

  • Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111

    PubMed  CAS  Google Scholar 

  • Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62

    PubMed  CAS  Google Scholar 

  • Pritzker LB, Moscarello MA (1998) A novel microtubule independent effect of paclitaxel: the inhibition of peptidylarginine deiminase from bovine brain. Biochim Biophys Acta 1388(1):154–160

    PubMed  CAS  Google Scholar 

  • Raijmakers R, Vogelzangs J, Raats J, Panzenbeck M, Corby M, Jiang H et al (2006) Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. J Comp Neurol 498(2):217–226

    PubMed  CAS  Google Scholar 

  • Raptopoulou A, Sidiropoulos P, Katsouraki M, Boumpas DT (2007) Anti-citrulline antibodies in the diagnosis and prognosis of rheumatoid arthritis: evolving concepts. Crit Rev Clin Lab Sci 44(4):339–363

    PubMed  CAS  Google Scholar 

  • Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R et al (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21(2):290–304

    PubMed  CAS  Google Scholar 

  • Rho J, Choi S, Seong YR, Cho WK, Kim SH, Im DS (2001) Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J Biol Chem 276(14):11393–11401

    PubMed  CAS  Google Scholar 

  • Rogers GE (1962) Occurrence of citrulline in proteins. Nature 194:1149–1151

    PubMed  CAS  Google Scholar 

  • Rogers GE, Taylor LD (1977) The enzymic derivation of citrulline residues from arginine residues in situ during the biosynthesis of hair proteins that are cross-linked by isopeptide bonds. Adv Exp Med Biol 86A:283–294

    PubMed  CAS  Google Scholar 

  • Rohrbach AS, Hemmers S, Arandjelovic S, Corr M, Mowen KA (2012) PAD4 is not essential for disease in the K/B×N murine autoantibody-mediated model of arthritis. Arthritis Res Ther 14(3):R104

    PubMed  CAS  Google Scholar 

  • Sambandam T, Belousova M, Accaviti-Loper MA, Blanquicett C, Guercello V, Raijmakers R et al (2004) Increased peptidylarginine deiminase type II in hypoxic astrocytes. Biochem Biophys Res Commun 325(4):1324–1329

    PubMed  CAS  Google Scholar 

  • Senshu T, Akiyama K, Nagata S, Watanabe K, Hikichi K (1989) Peptidylarginine deiminase in rat pituitary: sex difference, estrous cycle-related changes, and estrogen dependence. Endocrinology 124(6):2666–2670

    PubMed  CAS  Google Scholar 

  • Senshu T, Kan S, Ogawa H, Manabe M, Asaga H (1996) Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem Biophys Res Commun 225(3):712–719

    PubMed  CAS  Google Scholar 

  • Shirai H, Blundell TL, Mizuguchi K (2001) A novel superfamily of enzymes that catalyze the modification of guanidino groups. Trends Biochem Sci 26(8):465–468

    PubMed  CAS  Google Scholar 

  • Slack JL, Causey CP, Thompson PR (2011) Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell Mol Life Sci 68(4):709–720

    PubMed  CAS  Google Scholar 

  • Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y et al (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38(3):337–342

    PubMed  CAS  Google Scholar 

  • Snow AJ, Puri P, Acker-Palmer A, Bouwmeester T, Vijayaraghavan S, Kline D (2008) Phosphorylation-dependent interaction of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHA) with PADI6 following oocyte maturation in mice. Biol Reprod 79(2):337–347

    PubMed  CAS  Google Scholar 

  • Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42(6):508–514

    PubMed  CAS  Google Scholar 

  • Stensland ME, Pollmann S, Molberg O, Sollid LM, Fleckenstein B (2009) Primary sequence, together with other factors, influence peptide deimination by peptidylarginine deiminase-4. Biol Chem 390(2):99–107

    PubMed  CAS  Google Scholar 

  • Stoltze L, Schirle M, Schwarz G, Schroter C, Thompson MW, Hersh LB et al (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1(5):413–418

    PubMed  CAS  Google Scholar 

  • Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34(4):395–402

    PubMed  CAS  Google Scholar 

  • Suzuki A, Yamada R, Yamamoto K (2007) Citrullination by peptidylarginine deiminase in rheumatoid arthritis. Ann N Y Acad Sci 1108:323–339

    PubMed  CAS  Google Scholar 

  • Takahara H, Okamoto H, Sugawara K (1986) Affinity chromatography of peptidylarginine deiminase from rabbit skeletal muscle on a column of soybean trypsin inhibitor (Kunitz)-Sepharose. J Biochem (Tokyo) 99(5):1417–1424

    CAS  Google Scholar 

  • Takahara H, Kusubata M, Tsuchida M, Kohsaka T, Tagami S, Sugawara K (1992) Expression of peptidylarginine deiminase in the uterine epithelial cells of mouse is dependent on estrogen. J Biol Chem 267(1):520–525

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    PubMed  CAS  Google Scholar 

  • Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C, Nacken W et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5(10):e1000639

    PubMed  Google Scholar 

  • van der Helm-van Mil AH, Huizinga TW (2008) Advances in the genetics of rheumatoid arthritis point to subclassification into distinct disease subsets. Arthritis Res Ther 10(2):205

    PubMed  Google Scholar 

  • Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM et al (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187(1):538–552

    PubMed  CAS  Google Scholar 

  • Vossenaar ER, Zendman AJ, van Venrooij WJ, Pruijn GJ (2003) PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25(11):1106–1118

    PubMed  CAS  Google Scholar 

  • Vossenaar ER, Radstake TR, van der Heijden A, van Mansum MA, Dieteren C, de Rooij DJ et al (2004) Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann Rheum Dis 63(4):373–381

    PubMed  CAS  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306(5694):279–283

    PubMed  CAS  Google Scholar 

  • Wang Y, Li M, Stadler S, Correll S, Li P, Wang D et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213

    PubMed  CAS  Google Scholar 

  • Wartha F, Beiter K, Normark S, Henriques-Normark B (2007) Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin Microbiol 10(1):52–56

    PubMed  CAS  Google Scholar 

  • Wood DD, Ackerley CA, Brand B, Zhang L, Raijmakers R, Mastronardi FG et al (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88(4):354–364

    PubMed  CAS  Google Scholar 

  • Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC et al (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256(1):73–88

    PubMed  CAS  Google Scholar 

  • Yao H, Li P, Venters BJ, Zheng S, Thompson PR, Pugh BF et al (2008) Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 283(29):20060–20068

    PubMed  CAS  Google Scholar 

  • Ying S, Dong S, Kawada A, Kojima T, Chavanas S, Mechin MC et al (2009) Transcriptional regulation of peptidylarginine deiminase expression in human keratinocytes. J Dermatol Sci 53(1):2–9

    PubMed  CAS  Google Scholar 

  • Yoshida M, Tsuji M, Kurosaka D, Yasuda J, Ito Y, Nishizawa T et al (2006) Autoimmunity to citrullinated type II collagen in rheumatoid arthritis. Mod Rheumatol 16(5):276–281

    PubMed  CAS  Google Scholar 

  • Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA et al (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135(15):2627–2636

    PubMed  CAS  Google Scholar 

  • Zhang J, Dai J, Zhao E, Lin Y, Zeng L, Chen J et al (2004) cDNA cloning, gene organization and expression analysis of human peptidylarginine deiminase type VI. Acta Biochim Pol 51(4):1051–1058

    PubMed  CAS  Google Scholar 

  • Zhang X, Bolt M, Guertin MJ, Chen W, Zhang S, Cherrington BD et al (2012) Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proc Natl Acad Sci U S A 109(33):13331–13336

    PubMed  CAS  Google Scholar 

  • Zhao X, Okeke NL, Sharpe O, Batliwalla FM, Lee AT, Ho PP et al (2008) Circulating immune complexes contain citrullinated fibrinogen in rheumatoid arthritis. Arthritis Res Ther 10(4):R94

    PubMed  Google Scholar 

  • Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG (2012) Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming omega-NG-monomethylated arginine residues. J Biol Chem 287(11):7859–7870

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Katherine McKenney and Myles Dillon for useful conversations and the National Institutes of Health for support (AI099728-01A1 and AI067460). Dr. Arandjelovic was supported by the Philip S. Magaram, Esq. Research Award from the Arthritis Foundation. We apologize to investigators whose important contributions were not included due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerri A. Mowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rohrbach, A.S., Arandjelovic, S., Mowen, K.A. (2014). Physiological Pathways of PAD Activation and Citrullinated Epitope Generation. In: Nicholas, A., Bhattacharya, S. (eds) Protein Deimination in Human Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8317-5_1

Download citation

Publish with us

Policies and ethics