Skip to main content

Strategies to Overcome TRAIL Resistance in Cancer

  • Chapter
  • First Online:
Resistance to Immunotherapeutic Antibodies in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 2))

  • 1018 Accesses

Abstract

For decades the therapeutic induction of cell death in cancer cells represents one of the key goals of cancer therapies. However, since cancer cells have developed multiple mechanisms to resist cell death induction, we are still far from reaching this aim. In principle, the TRAIL receptor/ligand system represents a promising approach to selectively initiate cell death pathways in cancer cells and is amendable for therapeutic targeting. Therefore, further insights into the molecular mechanisms that regulate TRAIL signal transduction and the events that control sensitivity and resistance of human cancers towards TRAIL-mediated cell death are critical to exploit this approach for the treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-FU:

5-fluorouracil

AML:

Acute myeloid leukemia

APAF:

Apoptotic protease activating factor

cFLIP:

FLICE-like inhibitory protein

DISC:

Death-inducing signaling complex

FADD:

Fas-associated death domain

IAP:

Inhibitor of apoptosis

MAPK:

Mitogen-activated protein kinase

TNF:

Tumor necrosis factor

LOH:

Loss of heterozygosity

NF-κB:

Nuclear factor kappa-B

TNFR:

TNF receptor

TRAIL:

Tumor-necrosis-factor-related apoptosis-inducing ligand

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Lockshin RA, Zakeri Z. Cell death in health and disease. J Cell Mol Med. 2007;11:1214–24.

    Article  PubMed  Google Scholar 

  2. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25:4798–811.

    Article  PubMed  CAS  Google Scholar 

  3. Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov. 2008;7:1001–12.

    Article  PubMed  CAS  Google Scholar 

  4. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009;124:511–15.

    Article  PubMed  CAS  Google Scholar 

  5. Gerspach J, Wajant H, Pfizenmaier K. Death ligands designed to kill: development and application of targeted cancer therapeutics based on proapoptotic TNF family ligands. Results Probl Cell Differ. 2009;49:241–73.

    Article  PubMed  CAS  Google Scholar 

  6. Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008;19:325–31.

    Article  PubMed  CAS  Google Scholar 

  7. Pennarun B, Meijer A, de Vries EG, Kleibeuker JH, Kruyt F, de Jong S. Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta. 2010;1805:123–40.

    PubMed  CAS  Google Scholar 

  8. Holland PM. Targeting Apo2L/TRAIL receptors by soluble Apo2L/TRAIL. Cancer Lett. 2013;332:156–162.

    Google Scholar 

  9. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    Article  PubMed  CAS  Google Scholar 

  10. Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11:109–24.

    Article  PubMed  CAS  Google Scholar 

  11. Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH, Green DR. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 2004;117:773–86.

    Article  PubMed  CAS  Google Scholar 

  12. Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 2002;9:1046–56.

    Article  PubMed  CAS  Google Scholar 

  13. Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol. 2007;39:1462–75.

    Article  PubMed  CAS  Google Scholar 

  14. Ehrhardt H, Fulda S, Schmid I, Hiscott J, Debatin KM, Jeremias I. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene. 2003;22:3842–52.

    Article  PubMed  CAS  Google Scholar 

  15. Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D, Emme D, Roder C, Kalthoff H, Wajant H. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene. 2006;25:7434–39.

    Article  PubMed  CAS  Google Scholar 

  16. Dechant MJ, Fellenberg J, Scheuerpflug CG, Ewerbeck V, Debatin KM. Mutation analysis of the apoptotic “death-receptors” and the adaptors TRADD and FADD/MORT-1 in osteosarcoma tumor samples and osteosarcoma cell lines. Int J Cancer. 2004;109:661–67.

    Article  PubMed  CAS  Google Scholar 

  17. Pai SI, Wu GS, Ozoren N, Wu L, Jen J, Sidransky D, El-Deiry WS. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res. 1998;58:3513–18.

    PubMed  CAS  Google Scholar 

  18. Horak P, Pils D, Haller G, Pribill I, Roessler M, Tomek S, Horvat R, Zeillinger R, Zielinski C, Krainer M. Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res. 2005;3:335–43.

    Article  PubMed  CAS  Google Scholar 

  19. Elias A, Siegelin MD, Steinmuller A, von Deimling A, Lass U, Korn B, Mueller W. Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clin Cancer Res. 2009;15:5457–65.

    Article  PubMed  CAS  Google Scholar 

  20. Jin Z, McDonald ER 3rd, Dicker DT, El-Deiry WS. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem. 2004;279:35829–39.

    Article  PubMed  CAS  Google Scholar 

  21. Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol. 2006;26:7046–55.

    Article  PubMed  CAS  Google Scholar 

  22. Ruiz de Almodovar C, Ruiz-Ruiz C, Rodriguez A, Ortiz-Ferron G, Redondo JM, Lopez-Rivas A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) decoy receptor TRAIL-R3 is up-regulated by p53 in breast tumor cells through a mechanism involving an intronic p53-binding site. J Biol Chem. 2004;279:4093–101.

    Google Scholar 

  23. Chamuleau ME, Ossenkoppele GJ, van Rhenen A, van Dreunen L, Jirka SM, Zevenbergen A, Schuurhuis GJ, van de Loosdrecht AA. High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk Res. 2011;35:741–49.

    Article  PubMed  CAS  Google Scholar 

  24. Granci V, Bibeau F, Kramar A, Boissiere-Michot F, Thezenas S, Thirion A, Gongora C, Martineau P, Del Rio M, Ychou M. Prognostic significance of TRAIL-R1 and TRAIL-R3 expression in metastatic colorectal carcinomas. Eur J Cancer. 2008;44:2312–18.

    Article  PubMed  CAS  Google Scholar 

  25. Sheikh MS, Huang Y, Fernandez-Salas EA, El-Deiry WS, Friess H, Amundson S, Yin J, Meltzer SJ, Holbrook NJ, Fornace AJ Jr. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene. 1999;18:4153–59.

    Article  PubMed  CAS  Google Scholar 

  26. Meng RD, McDonald ER 3rd, Sheikh MS, Fornace AJ Jr, El-Deiry WS. The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther. 2000;1:130–44.

    Article  PubMed  CAS  Google Scholar 

  27. Lalaoui N, Morle A, Merino D, Jacquemin G, Iessi E, Morizot A, Shirley S, Robert B, Solary E, Garrido C, Micheau O. TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT. PLoS ONE. 2011;6:e19679.

    Article  PubMed  CAS  Google Scholar 

  28. Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, Huw L, Katta V, Cavet G, Hymowitz SG, Amler L, Ashkenazi A. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med. 2007;13:1070–77.

    Article  PubMed  CAS  Google Scholar 

  29. Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW, Parney IF, Roa WH, Petruk KC. Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res. 2001;61:1162–70.

    PubMed  CAS  Google Scholar 

  30. Krueger A, Baumann S, Krammer PH, Kirchhoff S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol Cell Biol. 2001;21:8247–54.

    Article  PubMed  CAS  Google Scholar 

  31. Fulda S, Meyer E, Debatin KM. Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression. Cancer Res. 2000;60:3947–56.

    PubMed  CAS  Google Scholar 

  32. Haag C, Stadel D, Zhou S, Bachem MG, Moller P, Debatin KM, Fulda S. Identification of c-FLIP(L) and c-FLIP(S) as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut. 2011;60:225–37.

    Article  PubMed  CAS  Google Scholar 

  33. Longley DB, Wilson TR, McEwan M, Allen WL, McDermott U, Galligan L, Johnston PG. c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene. 2006;25:838–48.

    Article  PubMed  CAS  Google Scholar 

  34. Fulda S. Targeting c-FLICE-like inhibitory protein in cancer. Expert Opin Ther Targets. 2013;17:195–201.

    Google Scholar 

  35. Fulda S. Caspase-8 in cancer biology and therapy. Cancer Lett. 2009;281:128–33.

    Article  PubMed  CAS  Google Scholar 

  36. Friesen C, Fulda S, Debatin KM. Deficient activation of the CD95 (APO-1/Fas) system in drug-resistant cells. Leukemia. 1997;11:1833–41.

    Article  PubMed  CAS  Google Scholar 

  37. Fulda S, Scaffidi C, Susin SA, Krammer PH, Kroemer G, Peter ME, Debatin KM. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem. 1998;273:33942–48.

    Article  PubMed  CAS  Google Scholar 

  38. Finlay D, Howes A, Vuori K. Critical role for caspase-8 in epidermal growth factor signaling. Cancer Res. 2009;69:5023–29.

    Article  PubMed  CAS  Google Scholar 

  39. Fulda S, Debatin KM. 5-Aza-2′-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene. 2006;25:5125–33.

    Article  PubMed  CAS  Google Scholar 

  40. Fulda S, Poremba C, Berwanger B, Hacker S, Eilers M, Christiansen H, Hero B, Debatin K-M. Loss of caspase-8 expression does not correlate with MYCN amplification, aggressive disease, or prognosis in neuroblastoma. Cancer Res. 2006;66:10016–23.

    Article  PubMed  CAS  Google Scholar 

  41. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med. 2000;6:529–35.

    Article  PubMed  CAS  Google Scholar 

  42. Grau E, Martinez F, Orellana C, Canete A, Yanez Y, Oltra S, Noguera R, Hernandez M, Bermudez JD, Castel V. Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Mol Carcinog. 2011;50:153–62.

    Article  PubMed  CAS  Google Scholar 

  43. Pingoud-Meier C, Lang D, Janss AJ, Rorke LB, Phillips PC, Shalaby T, Grotzer MA. Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res. 2003;9:6401–409.

    PubMed  CAS  Google Scholar 

  44. Himeji D, Horiuchi T, Tsukamoto H, Hayashi K, Watanabe T, Harada M. Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood. 2002;99:4070–78.

    Article  PubMed  CAS  Google Scholar 

  45. Horiuchi T, Himeji D, Tsukamoto H, Harashima S, Hashimura C, Hayashi K. Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes. Biochem Biophys Res Commun. 2000;272:877–81.

    Article  PubMed  CAS  Google Scholar 

  46. Miller MA, Karacay B, Zhu X, O’Dorisio MS, Sandler AD. Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma. Apoptosis. 2006;11:15–24.

    Article  PubMed  CAS  Google Scholar 

  47. Mohr A, Zwacka RM, Jarmy G, Buneker C, Schrezenmeier H, Dohner K, Beltinger C, Wiesneth M, Debatin KM, Stahnke K. Caspase-8L expression protects CD34 + hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene. 2005;24:2421–29.

    Article  PubMed  CAS  Google Scholar 

  48. Cursi S, Rufini A, Stagni V, Condo I, Matafora V, Bachi A, Bonifazi AP, Coppola L, Superti-Furga G, Testi R, Barila D. Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J. 2006;25:1895–905.

    Article  PubMed  CAS  Google Scholar 

  49. Barbero S, Barila D, Mielgo A, Stagni V, Clair K, Stupack D. Identification of a critical tyrosine residue in caspase 8 that promotes cell migration. J Biol Chem. 2008;283:13031–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The expert secretarial assistance of C Hugenberg is greatly appreciated. This work has been partially supported by grants from the Deutsche Forschungsgemeinschaft, the Ministerium für Bildung und Forschung (01GM1104C), European Community and IAP VII P7/32.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fulda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fulda, S. (2013). Strategies to Overcome TRAIL Resistance in Cancer. In: Bonavida, B. (eds) Resistance to Immunotherapeutic Antibodies in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7654-2_8

Download citation

Publish with us

Policies and ethics