Skip to main content

On Estimating the Economic Value of Insectivorous Bats: Prospects and Priorities for Biologists

  • Chapter
  • First Online:
Bat Evolution, Ecology, and Conservation

Abstract

Bats are among the most economically important nondomesticated mammals in the world. They are well-known pollinators and seed dispersers, but crop pest suppression is probably the most valuable ecosystem service provided by bats. Scientific literature and popular media often include reports of crop pests in the diet of bats and anecdotal or extrapolated estimates of how many insects are eaten by bats. However, quantitative estimates of the ecosystem services provided by bats in agricultural systems are rare, and the few estimates that are available are limited to a single cotton-dominated system in Texas. Despite the tremendous value for conservation and economic security of such information, surprisingly few scientific efforts have been dedicated to quantifying the economic value of bats. Here, we outline the types of information needed to better quantify the value of bats in agricultural ecosystems. Because of the complexity of the ecosystems involved, creative experimental design and innovative new methods will help advance our knowledge in this area. Experiments involving bats in agricultural systems may be needed sooner than later, before population declines associated with white-nose syndrome and wind turbines potentially render them impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosta SJ (2002) Habitat use, diet and roost selection by the big brown bat (Eptesicus fuscus) in North America: a case for conserving an abundant species. Mamm Rev 32(2):179–198

    Article  Google Scholar 

  • Alberdi A, Garin I, Aizpurua O, Aihartza J (2012) The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes. PLoS One 7:e35692

    Article  PubMed  CAS  Google Scholar 

  • Anthony ELP, Kunz TH (1977) Feeding strategies of the little brown bat, Myotis lucifugus, in southern New Hampshire. Ecology 58:775–786

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Belwood JJ, Fenton MB (1976) Variation in diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Can J Zool 54:1674–1678

    Article  Google Scholar 

  • Betke M, Hirsh DE, Makris NC, McCracken GF, Procopio M, Hristov NI, Tang S, Bagghi A, Reichard JD, Horn JW, Crampton S, Cleveland CJ, Kunz TH (2008) Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies than previously estimated. J Mammal 89:18–24

    Article  Google Scholar 

  • Blehert DS, Hicks AC, Behr MJ, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    Article  PubMed  CAS  Google Scholar 

  • Böhm SM, Wells K, Kalko EKV (2011) Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS One 6:e17857

    Article  PubMed  Google Scholar 

  • Bohmann K, Monadjem A, Lehmkuhl Noer C, Rasmussen M, Zeale MRK, Clare E, Jones G, Willerslev E, Gilbert MTP (2011) Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS One 6:e21441

    Article  PubMed  CAS  Google Scholar 

  • Boyles JG, Brack V Jr (2009) Modeling survival rates of hibernating mammals with individual-based models of energy expenditure. J Mammal 90:9–16

    Article  Google Scholar 

  • Boyles JG, McKechnie AE (2010) Energy conservation in hibernating endotherms: why “suboptimal” temperatures are optimal. Ecol Model 221:1644–1647

    Article  Google Scholar 

  • Boyles JG, Willis CKR (2010) Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome? Front Ecol Environ 8:92–98

    Article  Google Scholar 

  • Boyles JG, Cryan PM, McCracken GF, Kunz TH (2011) Economic importance of bats in agriculture. Science 332:41–42

    Article  PubMed  Google Scholar 

  • Brack V Jr, LaVal RK (2006) Diet of the gray myotis (Myotis grisescens): variability and consistency, opportunism, and selectivity. J Mammal 87:7–18

    Article  Google Scholar 

  • Bumrungsri S, Sripaoraya E, Chongsiri T, Sridith K, Racey PA (2009) The pollination ecology of durian (Durio zibethinus, Bombacaceae). J Trop Ecol 25:85–92

    Article  Google Scholar 

  • Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PDN (2009) Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Mol Ecol 18:2532–2542

    Article  PubMed  Google Scholar 

  • Clare EL, Barber BR, Sweeney BW, Hebert PDN, Fenton MB (2011) Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Mol Ecol 20:1772–1780

    Article  PubMed  CAS  Google Scholar 

  • Clark DR Jr (1988) How sensitive are bats to insecticides? Wildl Soc Bull 16:399–403

    Google Scholar 

  • Cleveland CJ, Betke M, Federico P, Frank JD, Hallam TG, Horn J, Lopez JD, McCracken GF, Medellin RA, Moreno-Valdez A, Sansone CG, Westbrook JK, Kunz T (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front Ecol Environ 4:238–243

    Article  Google Scholar 

  • Conner WE, Corcoran AJ (2012) Sound strategies: the 65-million-year-old battle between bats and insects. Annu Rev Entomol 57:21–39

    Article  PubMed  CAS  Google Scholar 

  • Corcoran AJ, Barber JR, Conner WE (2009) Tiger moth jams bat sonar. Science 325:325–327

    Article  PubMed  CAS  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    Article  PubMed  Google Scholar 

  • Cryan PM, Barclay RMR (2009) Causes of bat fatalities at wind turbines: hypotheses and predictions. J Mammal 90:1330–1340

    Article  Google Scholar 

  • Dechmann DKN, Ehret S, Gaub A, Kranstauber B, Wikelski M (2011) Low metabolism in a tropical bat from lowland Panama measured using heart rate telemetry: an unexpected life in the slow lane. J Exp Biol 214:3605–3612

    Article  PubMed  Google Scholar 

  • Dunbar MB, Tomasi TE (2006) Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. J Mammal 87:1096–1102

    Article  Google Scholar 

  • Encarnação JA, Dietz M (2006) Estimation of food intake and ingested energy in Daubenton's bats (Myotis daubentonii) during pregnancy and spermatogenesis. Eur J Wildl Res 52:221–227

    Article  Google Scholar 

  • Federico P, Dimitrov DT, McCracken GF (2008a) Bat population dynamics: multilevel model based on individuals’ energetics. Math Biosci Eng 5:743–756

    Article  PubMed  Google Scholar 

  • Federico P, Hallam TG, McCracken GF, Purucker ST, Grant WE, Correa-Sandoval AN, Westbrook JK, Medellín RA, Cleveland CJ, Sansone CG, López JD, Betke M, Moreno-Valdez A, Kunz TH (2008b) Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecol Appl 18:826–837

    Article  PubMed  Google Scholar 

  • Fenton MB (1997) Science and conservation of bats. J Mammal 78(1):1–14

    Article  Google Scholar 

  • Fenton MB, Morris GK (1976) Opportunistic feeding by desert bats (Myotis spp.). Can J Zool 54:526–530

    Article  Google Scholar 

  • Flaquer C, Torre I, Ruiz-Jarillo R (2006) The value of bat-boxes in the conservation of Pipistrellus pygmaeus in wetland rice paddies. Biol Conserv 128:223–230

    Article  Google Scholar 

  • Frick WF, Pollock JF, Hicks AC, Langwig K, Reynolds DS, Turner GG, Butchkoski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682

    Article  PubMed  CAS  Google Scholar 

  • Gillam EH (2007) Eavesdropping by bats on the feeding buzzes of conspecifics. Can J Zool 85:795–801

    Article  Google Scholar 

  • Gillam EH, Westbrook JK, Schleider PG, McCracken GF (2011) Virtual bats and real insects: effects of echolocation on pheromone-tracking behavior of male corn earworm moths, Helicoverpa zea. Southwest Nat 56:103–107

    Article  Google Scholar 

  • Hall M (1832) On hibernation. Philos Trans R Soc Lond 122:335–360

    Article  Google Scholar 

  • Hock RJ (1951) The metabolic rates and body temperatures of bats. Biol Bull (Woods Hole) 101:289–299

    Article  CAS  Google Scholar 

  • Kalka MB, Smith AR, Kalko EKV (2008) Bats limit arthropods and herbivory in a tropical forest. Science 320:71

    Article  PubMed  CAS  Google Scholar 

  • Keeler JO, Studier EH (1992) Nutrition in pregnant big brown bats (Eptesicus fuscus) feeding on june beetles. J Mammal 73:426–430

    Article  Google Scholar 

  • Kelm DH, von Helversen O (2007) How to budget metabolic energy: torpor in a small Neotropical mammal. J Comp Physiol B 177:667–677

    Article  PubMed  Google Scholar 

  • King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Article  PubMed  CAS  Google Scholar 

  • Kiser M, Kiser S (2002) Cultivating bats: BCI research explores airborne alternatives to pesticides. BATS Mag 20:7–9

    Google Scholar 

  • Knipling EF (1979) The basic principles of insect population suppression and management. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD, Larkin RP, Strickland MD, Thresher RW, Tuttle MD (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5:315–324

    Article  Google Scholar 

  • Kunz TH, Braun de Torrez E, Bauer D, Lovova T, Fleming TH (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38

    Article  PubMed  Google Scholar 

  • Kurta A, Whitaker JO Jr (1998) Diet of the endangered Indiana bat (Myotis sodalis) on the northern edge of its range. Am Midl Nat 140(2):280–286

    Article  Google Scholar 

  • Kurta A, Bell GP, Nagy KA, Kunz TH (1989) Energetics of pregnancy and lactation in free-ranging little brown bats (Myotis lucifugus). Physiol Zool 62:804–818

    Google Scholar 

  • Leberg P (2005) Genetic approaches for estimating the effective size of populations. J Wildl Manage 69:1385–1399

    Article  Google Scholar 

  • Long RF, Kiser WM, Kiser SB (2006) Well-placed bat houses can attract bats to Central Valley farms. Calif Agric 60:91–94

    Article  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • McCracken GF, Westbrook JK, Brown VA, Eldridge M, Federico P, Kunz TH (2012) Bats track and exploit changes in insect pest populations. PLoS One 7:e43839

    Article  PubMed  CAS  Google Scholar 

  • Meretsky VJ, Brack V Jr, Carter TC, Clawson R, Currie RR, Hemberger TA, Herzog CJ, Hicks AC, Kath JA, MacGregor JR, King RA, Good DH (2010) Digital photography improves consistency and accuracy of bat counts in hibernacula. J Wildl Manage 74:166–173

    Article  Google Scholar 

  • Minnaar C, Boyles JG, Sole CL, Minnaar IA, McKechnie AE (in review) Artificial lights may give bats an edge in the bat-moth coevolutionary arms race

    Google Scholar 

  • Morrison EB, Lindell CA (2012) Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol Appl 22:1526–1534

    PubMed  Google Scholar 

  • Nielsen AL, Hamilton GC, Matadha D (2008) Developmental rate estimation and life table analysis for Halyomorpha halys (Hemiptera: Pentatomidae). Environ Entomol 37:348–355

    Article  PubMed  Google Scholar 

  • Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B Biol Sci 316:335–427

    Article  Google Scholar 

  • O’Farrell MJ, Studier EH, Ewing WG (1971) Energy utilization and water requirements of captive Myotis thysanodes and Myotis lucifugus (Chiroptera). Comp Biochem Physiol A Comp Physiol 39A:549–552

    Article  Google Scholar 

  • O’Shea TJ, Bogan MA (2003) Monitoring trends in bat populations of the United States and territories: problems and prospects. U.S. Geological Survey, Biological Resources Discipline, Information and Technology Report

    Google Scholar 

  • O’Shea TJ, Clark DR Jr (2002) An overview of contaminants and bats, with special reference to insecticides and the Indiana bat. In: Kurta A, Kennedy J (eds) The Indiana Bat: biology and management of an endangered species. Bat Conservation International, Austin, TX

    Google Scholar 

  • O’Shea TJ, Johnston JJ (2009) Environmental contaminants and bats: investigating exposure and effects. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Pavey CR, Burwell CJ, Milne DJ (2006) The relationship between echolocation-call frequency and moth predation of a tropical bat fauna. Can J Zool 84:425–433

    Article  Google Scholar 

  • Pearson OP (1947) The rate of metabolism of some small mammals. Ecology 28:127–145

    Article  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  PubMed  CAS  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    Article  PubMed  CAS  Google Scholar 

  • Puechmaille SJ, Petit EJ (2007) Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session. J Appl Ecol 44:843–852

    Article  Google Scholar 

  • Razgour O, Clare EL, Zeale MRK, Hanmer J, Schnell IB, Rasmussen M, Gilbert TP, Jones G (2011) High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol Evol 1:556–570

    Article  PubMed  Google Scholar 

  • Reiskind MH, Wund MA (2009) Experimental assessment of the impacts of northern long-eared bats on the ovipositing Culex (Diptera: Culicidae) mosquitoes. J Med Entomol 46:1037–1044

    Article  PubMed  Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological control agents. Annu Rev Entomol 29:299–320

    Article  Google Scholar 

  • Russell AL, Cox MP, Brown VA, McCracken GF (2011) Population growth of Mexican free-tailed bats (Tadarida brasiliensis mexicana) predates human agricultural activity. BMC Evol Biol 11:88

    Article  PubMed  Google Scholar 

  • Rydell J (1992) Exploitation of insects around streetlamps by bats in Sweden. Funct Ecol 6:744–750

    Article  Google Scholar 

  • Sansone CG, Smith JW (2001) Natural mortality of Helicoverpa zea (Lepidoptera: Noctuidae) in short-season cotton. Environ Entomol 30:112–122

    Article  Google Scholar 

  • Sapir N, Wikelski M, McCue MD, Pinshow B, Nathan R (2010) Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. PLoS One 5:e13956

    Article  PubMed  Google Scholar 

  • Speakman JR, Racey PA (1991) No cost of echolocation for bats in flight. Nature 350:421–423

    Article  PubMed  CAS  Google Scholar 

  • Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

    Article  PubMed  CAS  Google Scholar 

  • Storm JJ, Whitaker JO Jr (2008) Prey selection of big brown bats (Eptesicus fuscus) during an emergence of 17-year cicadas (Magicicada spp.). Am Midl Nat 160:350–357

    Article  Google Scholar 

  • Studier EH, Howell DJ (1969) Heart rate of female big brown bats in flight. J Mammal 50:842–845

    Article  Google Scholar 

  • Studier EH, Sevick SH (1992) Live mass, water content, nitrogen and mineral levels in some insects from south-central lower Michigan. Comp Biochem Physiol A Comp Physiol 103A:579–595

    Article  CAS  Google Scholar 

  • Svensson AM, Rydell J (1998) Mercury vapour lamps interfere with the bat defence of tympanate moths (Operophtera spp.; Geometridae). Anim Behav 55:223–226

    Article  PubMed  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  PubMed  CAS  Google Scholar 

  • Thomas DW, Dorais M, Bergeron J (1990) Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J Mammal 71(3):475–479

    Article  Google Scholar 

  • Turner GG, Reeder DM, Coleman JC (2011) A five-year assessment of mortality and geographic spread of white-nose syndrome in North American bats and a look to the future. Bat Res News 52:13–27

    Google Scholar 

  • Tuttle NM, Benson DP, Sparks DW (2006) Diet of the Myotis sodalis (Indiana Bat) at an urban/rural interface. Northeast Nat 13:435–442

    Article  Google Scholar 

  • Vege S, McCracken GF (2001) Microsatellite genotypes of big brown bats (Eptesicus fuscus: Vespertilionidae, Chiroptera) obtained from their feces. Acta Chiropterol 3:237–244

    Google Scholar 

  • Voigt CC, Lewanzik D (2011) Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc Biol Sci 278:2311–2317

    Article  PubMed  Google Scholar 

  • Voigt CC, Kelm DV, Visser GH (2006) Field metabolic rates of phytophagous bats: do pollination strategies of plants make life of nectar-feeders spin faster? J Comp Physiol B 176:213–222

    Article  PubMed  Google Scholar 

  • Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J Wildl Manage 69:1419–1433

    Article  Google Scholar 

  • Whitaker JO Jr (1988) Food habits analysis of insectivorous bats. In: Kunz TH (ed) Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Whitaker JO Jr (1995) Food of the big brown bat Eptesicus fuscus from maternity colonies in Indiana and Illinois. Am Midl Nat 134:346–360

    Article  Google Scholar 

  • Whitaker JO Jr (2004) Prey selection in a temperate zone insectivorous bat community. J Mammal 85(3):460–469

    Article  Google Scholar 

  • Whitaker JO Jr, Clem P (1992) Food of the evening bat Nycticeius humeralis from Indiana. Am Midl Nat 127:211–214

    Article  Google Scholar 

  • Whitaker JO Jr, Rissler LJ (1993) Do bats feed in winter? Am Midl Nat 129(1):200–203

    Article  Google Scholar 

  • Whitaker JO Jr, Rose RK, Padgett TM (1997) Food of the red bat Lasiurus borealis in winter in the Great Dismal Swamp, North Carolina and Virginia. Am Midl Nat 137(2):408–411

    Article  Google Scholar 

  • Whitaker JO Jr, McCracken GF, Siemers BM (2009) Food habits analysis of insectivorous bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats, 2nd edn. The John Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Wilkinson GS, South JM (2002) Life history, ecology and longevity in bats. Aging Cell 1:124–131

    Article  PubMed  CAS  Google Scholar 

  • Williams-Guillen K, Perfecto I, Vandermeer J (2008) Bats limit insects in a neotropical agroforestry system. Science 320:70

    Article  PubMed  CAS  Google Scholar 

  • Willis CKR, Turbill C, Geiser F (2005) Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat (Vespadelus vulturnus). J Comp Physiol B 175:479–486

    Article  PubMed  Google Scholar 

  • Zeale MRK, Butlin RK, Barker GLA, Lees DC, Jones G (2011) Taxon-specific PCR and DNA barcoding arthropod prey in bat faeces. Mol Ecol Resour 11:236–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Scott Pedersen and Rick Adams for inviting us to write this chapter. Any use of trade product or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin G. Boyles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boyles, J.G., Sole, C.L., Cryan, P.M., McCracken, G.F. (2013). On Estimating the Economic Value of Insectivorous Bats: Prospects and Priorities for Biologists. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_24

Download citation

Publish with us

Policies and ethics