Skip to main content

An Electrothermal Frequency Reference in Standard 0.7 μm CMOS

  • Chapter
  • First Online:
Electrothermal Frequency References in Standard CMOS

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 891 Accesses

Abstract

This chapter describes the design and implementation of an electrothermal (thermal-diffusivity-based) frequency reference in standard 0.7 μm CMOS. The reference locks the output frequency of a variable oscillator using a frequency-locked loop to the process-insensitive phase shift of an electrothermal filter. This is in turn a function of the thermal-diffusivity of silicon, which is temperature dependent. Therefore, the loop needs to be temperature-compensated. To do this, the digital output of an on-chip band-gap temperature sensor is applied to the digitally-assisted frequency-locked loop that was described in the previous chapter. The result is a frequency reference in a 0.7 μm standard CMOS whose output frequency is stable to within ±0.1% over the military temperature range (-55°C to 125°C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tokunaga Y et al (2010) An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J Solid-State Circ 45(6):1150–1158

    Article  Google Scholar 

  2. De Smedt V et al (2009) A 66 μW 86 ppm/ °C fully-integrated 6 MHz Wienbridge oscillator with a 172 dB phase noise FOM. IEEE J Solid-State Circ 44(7):1990–2001

    Article  Google Scholar 

  3. McCorquodale MS et al (2007) A monolithic and self-referenced RF LC clock generator compliant with USB 2.0. IEEE J Solid-State Circ 42(2):385–399

    Article  Google Scholar 

  4. McCorquodale MS et al (2008) A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 350–351

    Google Scholar 

  5. McCorquodale MS et al (2010) A silicon die as a frequency source. In: Proceedings of the IEEE international frequency control symposium, Newport Beach, California, June 2010, pp 103–108

    Google Scholar 

  6. McCorquodale MS et al (2011) A history of the development of CMOS oscillators: the dark horse in frequency control. In: IEEE international frequency control symposium, San Francisco, CA, pp 437–442

    Google Scholar 

  7. Sundaresan K et al (2006) Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J Solid-State Circ 41(2):433–442

    Article  Google Scholar 

  8. Foley DJ et al (2006) CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator. IEEE J Solid-State Circ 36:417–423

    Article  Google Scholar 

  9. Makinwa KAA, Snoeij MF (2006) A CMOS temperature-to-frequency converter with an inaccuracy of less than ±0.5 °C (3σ) from −40 °C to 105 °C. IEEE J Solid-State Circ 41(12):2992–2997

    Article  Google Scholar 

  10. Szekely V (1994) Thermal monitoring of microelectronic structures. Microelectron J 25(3):157–170

    Article  MathSciNet  Google Scholar 

  11. Kashmiri SM et al (2009) A temperature-to-digital converter based on an optimized electrothermal filter. IEEE J Solid-State Circ 44(7):2026–2035

    Article  Google Scholar 

  12. Pertijs MAP et al (2005) A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1 °C from −55 °C to 125 °C. IEEE J Solid-State Circ 40(12):2805–2815

    Article  Google Scholar 

  13. Kashmiri SM, Makinwa KAA (2009) A digitally-assisted electrothermal frequency-locked loop. In: Proceedings of the 35th ESSCIRC, Athens, Greece, pp 296–299

    Google Scholar 

  14. Kashmiri SM, Makinwa KAA (2009) Measuring the thermal diffusivity of CMOS chips. In: Proceedings of the IEEE sensors, Christ church, New Zealand, pp 45–48

    Google Scholar 

  15. van Vroonhoven CPL et al (2010) A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2 °C (3σ) from −55 °C to 125 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 314–315

    Google Scholar 

  16. Chen P et al (2009) A time-domain sub-micro watt temperature sensor with digital set-point programming. IEEE Sens J 9(12):1639–1646

    Article  Google Scholar 

  17. Tuthill M (1998) A switched-current, switched-capacitor temperature sensor in 0.6 μ CMOS. IEEE J Solid-State Circ 33(7):1117–1122

    Article  Google Scholar 

  18. Meijer GCM et al (2001) Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens J 1(3):225–234

    Article  MathSciNet  Google Scholar 

  19. Pertijs MAP, Huijsing JH (2006) Precision temperature sensors in CMOS technology. Springer, Dordrecht

    Google Scholar 

  20. Aita AL et al (2009) A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (3σ) from −70 °C to 130 °C. In: IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp 342–343

    Google Scholar 

  21. Sebastiano F (2010) A 1.2-V 10-μW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from −70 C to 125 °C. IEEE J Solid-State Circ 45(12):2591–2601

    Article  Google Scholar 

  22. Souri K et al (2010) A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of ±0.25 °C (3σ) from −40 °C to 125 °C. In: ISSCC Dig. Tech. Papers, February 2010, San Francisco, CA, pp 310–311

    Google Scholar 

  23. Kashmiri SM et al (2010) A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1 % from −55 °C to 125 °C. IEEE J Solid-State Circ 45(12):2510–2520

    Article  Google Scholar 

  24. Brokaw AP (1974) A simple three-terminal IC bandgap reference. IEEE J Solid-State Circ 9(6):388–393

    Article  Google Scholar 

  25. Gray PR, Meyer RG (2001) Analysis and design of analog integrated circuits, 4th edn. Wiley. New York, ISBN 0-471-32168-0

    Google Scholar 

  26. Schreier R, Temes GC (2005) Understanding delta-sigma data converters. Wiley, Chichester

    Google Scholar 

  27. Temes G, Steensgaard J (2007) Structural optimization and scaling of delta-sigma modulators. In: Lecture notes of MEAD advanced engineering course on delta sigma modulators, Lausanne, Switzerland

    Google Scholar 

  28. Pertijs MAP et al (2004) Bitstream trimming of a smart temperature sensor. In: Proceedings of the IEEE sensors, Vienna, Austria, pp 904–907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kashmiri, S.M., Makinwa, K.A.A. (2013). An Electrothermal Frequency Reference in Standard 0.7 μm CMOS. In: Electrothermal Frequency References in Standard CMOS. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6473-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6473-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6472-3

  • Online ISBN: 978-1-4614-6473-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics