Skip to main content

Abstract

The CI-based methods for measuring the APSD properties of OIP-­produced aerosols are complex, exacting, and laborious to undertake. Yet they are the only accepted methods by regulatory agencies worldwide for determining particle aerodynamic size-related properties. In 2003, a group within the Product Quality Research Institute (PQRI), a body set up by pharmaceutical industry, the FDA, and academia to explore complex scientific and regulatory problems, developed a guide to good cascade impactor practices (GCIP). This chapter contains a review of the essence of their work, augmented by developments that have taken place since the original article was published.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols S (2004) Particle size distribution parameters using the next generation pharmaceutical impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis HealthCare International Publishing, River Grove, IL, pp 485–487

    Google Scholar 

  2. Bonam M, Christopher D, Cipolla D, Donovan B, Goodwin D, Holmes S, Lyapustina S, Mitchell J, Nichols S, Petterson G, Quale C, Rao N, Singh D, Tougas T, Van Oort M, Walther B, Wyka B (2008) Minimizing variability of cascade impaction measurements in inhalers and nebulizers. AAPS PharmSciTech 9(2):404–413

    Article  PubMed  CAS  Google Scholar 

  3. Christopher D, Curry P, Doub B, Furnkranz K, Lavery M, Lin K, Lyapustina S, Mitchell J, Rogers B, Strickland H, Tougas T, Tsong Y, Wyka B (2003) Considerations for the development and practice of cascade impaction testing including a mass balance failure investigation tree. J Aerosol Med 16:235–247

    Article  PubMed  Google Scholar 

  4. US Food and Drug Administration (FDA) (1998) CDER. Draft guidance for industry metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products chemistry, manufacturing, and controls documentation, Rockville, MD. Accessed 6 Jan 2012 at http://www.fda.gov/cder/guidance/2180dft.pdf

  5. Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, Van Oort M, Olsson B, Holroyd MJ, Mitchell JP, Hochrainer D (2003) Next generation pharmaceutical impactor. Part 1: design. J Aerosol Med 16(3):283–299

    Article  PubMed  Google Scholar 

  6. Purewal TS (2001) Test methods for inhalers to check performance under normal use and unintentional use conditions. In: Drug delivery to the lungs-12. The Aerosol Society, London, pp 92–98

    Google Scholar 

  7. Stewart E, Holt J, Fitzgerald C, Bell P, Popow J (2006) Impact of using an automated shake-­fire system on the shot weight and dose content uniformity of an HFA metered dose inhaler. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 581–583

    Google Scholar 

  8. Miller NC, Roberts DL, Marple VA (2002) The ‘Service Head’ approach to automating the next generation pharmaceutical impactor: proof of concept. In: Dalby RN, Byron PR, Peart J, Farr SJ (eds) Respiratory drug delivery VIII. Davis Horwood International, Raleigh, NC, pp 521–523

    Google Scholar 

  9. Holzner PM, Muller BW (1995) Particle size determination of metered dose inhalers with inertial separation methods: apparatus A and B (BP), four stage impinger and Andersen Mark II cascade impactor. Int J Pharm 116(1):11–18

    Article  CAS  Google Scholar 

  10. Mitchell JP, Nagel MW, Wiersema KJ, Doyle CC (2003) Aerodynamic particle size analysis of aerosols from pressurized metered dose inhalers: comparison of Andersen 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 Aerodynamic Particle Sizer aerosol spectrometer. AAPS PharmSciTech 4(4):article 54. Accessed 10 Jan 2012 at: http://www.aapspharmscitech.org/view.asp?art=pt040454%26;pdf=yes

  11. Taki M, Zeng XM, Marriott C, Martin G (2006) Comparison of deposition profiles of drugs from a combination dry powder inhaler using the Andersen cascade impactor (ACI), multistage liquid impinger (MSLI) and next generation impactor (NGI). In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 659–662

    Google Scholar 

  12. Jozwiakowski J, Lor X, Paulson S, Schultz D (2006) Comparison of Andersen cascade ­impactor and next generation impactor performance of beclomethasone pMDIs with ol­igolactic acid. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug d­elivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 357–359

    Google Scholar 

  13. Mitchell JP, Nagel MW (2004) Particle size analysis of aerosols from medicinal inhalers. KONA Powder Part 22:32–65

    Google Scholar 

  14. Roberts DL, Mitchell JP (2011) Influence of stage efficiency curves on full-resolution impactor data interpretation. Drug delivery to the lungs-22. The Aerosol Society, Edinburgh, pp 181–184. Available at: http://ddl-conference.org.uk/index.php?q=previous_conferences. Visited 4 Aug 2012

  15. Finlay WH, Stapleton KW (1999) Undersizing of droplets from a vented nebulizer caused by aerosol heating during transit through an Andersen impactor. J Aerosol Sci 30(1):105–109

    Article  CAS  Google Scholar 

  16. Mitchell JP (2000) Particle standards: their development and application. KONA Powder Part 18:41–59

    CAS  Google Scholar 

  17. Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray SC, Hudson-Curtis BL (2003) Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing)—Part 2: archival calibration. J Aerosol Med 16(3):301–324

    Article  PubMed  Google Scholar 

  18. Chambers F, Ali A, Mitchell J, Shelton C, Nichols S (2010) Cascade impactor (CI) mensuration—an assessment of the accuracy and precision of commercially available optical measurement systems. AAPS PharmSciTech 11(1):472–484

    Article  PubMed  CAS  Google Scholar 

  19. Roberts DL, Romay FJ (2005) Relationship of stage mensuration data to the performance of new and used cascade impactors. J Aerosol Med 18(4):396–413

    Article  PubMed  Google Scholar 

  20. European Directorate for the Quality of Medicines and Healthcare (EDQM). Preparations for inhalation: aerodynamic assessment of fine particles. (2012) Section 2.9.18—European Pharmacopeia [—Apparatus B in versions up to 4th edn. 2002] Council of Europe, 67075, Strasbourg, France

    Google Scholar 

  21. United States Pharmacopeial Convention (USP) (2012) Chapter 601: Aerosols, metered-dose inhalers, and dry powder inhalers. USP35-NF30, Rockville, MD

    Google Scholar 

  22. Roberts DL (2009) Theory of multi-nozzle impactor stages and the interpretation of stage mensuration data. Aerosol Sci Technol 43(11):1119–1129

    Article  CAS  Google Scholar 

  23. Svensson M, Pettersson G, Asking L (2005) Mensuration and cleaning of the jets in Andersen cascade impactors. Pharm Res 22(1):161–165

    Article  PubMed  CAS  Google Scholar 

  24. Milhomme K, Dunbar C, Lavarreda D, Roberts D, Romay F (2006) Measuring changes in the effective jet diameter of cascade impactor stages with the flow resistance monitor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 405–407

    Google Scholar 

  25. Stein SW, Olson BA (1997) Variability in size distribution measurements obtained using multiple Andersen mark II cascade impactors. Pharm Res 14(12):1718–1725

    Article  PubMed  CAS  Google Scholar 

  26. Stein SW (1999) Size distribution measurements of metered dose inhalers using Andersen mark II cascade impactors. Int J Pharm 186(1):43–52

    Article  PubMed  CAS  Google Scholar 

  27. Kadrichu N, Rao N, Sluggett G, Fong B, Jones G, Perrone T, Seshadri S, Shao P, Williams G, Zhang J, Bennett D (2004) Sensitivity of Andersen cascade impactor response to stage nozzle dimensions. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 561–564

    Google Scholar 

  28. Marple VA, Rubow KL, Olson BA (2001) Inertial, gravitational, centrifugal, and thermal collection techniques. In: Baron PA, Willeke K (eds) Aerosol measurement: principles, techniques and applications, 2nd edn. Wiley, New York, NY, pp 229–260

    Google Scholar 

  29. Asking L, Mitchell J, Nichols S (2008) Air flow meters used at testing of inhalation products—an inter-laboratory comparison, Drug delivery to the lungs-19. The Aerosol Society, Edinburgh, UK, pp 42–44, Available at: http://ddl-conference.org.uk/index.php?q=previous_conferences. Visited 4 Aug 2012

    Google Scholar 

  30. Olsson B, Asking L (2002) Methods of setting and measuring flowrates in pharmaceutical impactor experiments, 13th edn, Drug delivery to the lungs-13. The Aerosol Society, London, pp 205–208

    Google Scholar 

  31. Wiktorsson B, Asking L (2002) Comparison between flowmeters used to set flows in pharmaceutical inhaler testing, 13th edn, Drug delivery to the lungs-13. The Aerosol Society, London, pp 168–171

    Google Scholar 

  32. Van Oort M, Downey B, Roberts W (1996) Verification of operating the Andersen cascade impactor at different flowrates. Pharm Forum 22(2):2211–2215

    Google Scholar 

  33. Mitchell JP, Nagel MW (2003) Cascade impactors for the size characterization of aerosols from medical inhalers: their uses and limitations. J Aerosol Med 16(4):341–377

    Article  PubMed  CAS  Google Scholar 

  34. Copley M, Smurthwaite M, Roberts DL, Mitchell JP (2005) Revised internal volumes of cascade impactors for those provided by Mitchell and Nagel. J Aerosol Med 18(3):364–366

    Article  PubMed  CAS  Google Scholar 

  35. Stein S, Myrdal PB (2006) The relative influence of atomization and evaporation on metered dose inhaler drug delivery efficiency. Aerosol Sci Technol 40(5):335–347

    Article  CAS  Google Scholar 

  36. Peng C, Chow A, Chan CK (2000) Study of the hygroscopic properties of selected pharmaceutical aerosols using single particle levitation. Pharm Res 17(9):1104–1109

    Article  PubMed  CAS  Google Scholar 

  37. Finlay WH (1998) Estimating the type of hygroscopic behavior exhibited by aqueous droplets. J Aerosol Med 11(4):221–229

    Article  PubMed  CAS  Google Scholar 

  38. Byron PR, Davis SS, Bubb MD, Cooper P (1977) Pharmaceutical implications of particle growth at high relative humidities. Pesticide Sci 8(5):521–526

    Article  CAS  Google Scholar 

  39. Martin AR, Finlay WH (2004) Effect of humidity on size distributions of MDI particles exiting a mechanical ventilation holding chamber. In: Proceedings of international conference on MEMS, NANO and Smart Systems, 2004. ICMENS, Banff, Alberta, Canada, pp 280–283. Available at: http://www.computer.org/portal/web/csdl/doi/10.1109/ICMENS.2004.57. Visited 10 Jan 2012

  40. Byron PR, Peart J, Staniforth JN (1997) Aerosol electrostatics I: properties of fine powders before and after aerosolization by dry powder inhalers. Pharm Res 14(6):698–705

    Article  PubMed  CAS  Google Scholar 

  41. Murtomaa M, Mellin V, Harjunen P, Lankinen T, Laine E, Lehto VP (2004) Effect of particle morphology on the triboelectrification in dry powder inhalers. Int J Pharm 282(1–2):107–114

    Article  PubMed  CAS  Google Scholar 

  42. Carter PA, Cassidy OE, Rowley G, Merrifield DR (1997) Triboelectrification of fractionated crystalline and spray dried lactose. Pharm Pharmacol Commun 4:111–115

    Google Scholar 

  43. Carter PA, Rowley G, McEntee NJ (1997) An investigation of experimental variables during triboelectrification studies on powders. J Pharm Pharmacol 49(S4):23

    Google Scholar 

  44. Murtomaa M, Strengella S, Lainea E, Bailey A (2003) Measurement of electrostatic charge of an aerosol using a grid-probe. J Electrostat 58(3–4):197–207

    Article  Google Scholar 

  45. Ramirez-Dorronsoro J-C, Jacko RB, Kildsig DO (2006) Chargeability measurements of selected pharmaceutical dry powders to assess their electrostatic charge control capabilities. AAPS PharmSciTechnol 7(4):article 103 (2006), Available at: http://www.aapspharmscitech.org/view.asp?art=pt0704103. Accessed 10 Jan 2012

  46. Kwok PCL, Glover W, Chan HK (2005) Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J Pharm Sci 94(12):2789–2799

    Article  PubMed  CAS  Google Scholar 

  47. Glover W, Kwok P, Chan HK (2004) Electrostatic charges in metered dose inhalers. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 829–832

    Google Scholar 

  48. Glover W, Chan HK (2004) Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impaction (ELPI). J Aerosol Sci 35(6):755–764

    Article  CAS  Google Scholar 

  49. Crampton M, Kinnersley R, Ayres J (2004) Sub-micrometer particle production by pressurized metered dose inhalers. J Aerosol Med 17(1):33–42

    Article  PubMed  CAS  Google Scholar 

  50. Glover W, Chan HK (2004) Electrostatic charge characterization of pharmaceutical aerosols. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 825–826

    Google Scholar 

  51. Kwok P, Chan HK (2004) Measurement of electrostatic charge of nebulised aqueous droplets with the electrical low pressure impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 833–836

    Google Scholar 

  52. Peart P, Magyar C, Byron PR (1998) Aerosol electrostatics—metered dose inhalers (MDIs): reformulation and device design issues. In: Dalby RN, Byron PR, Farr SJ (eds) Respiratory drug delivery-VI. Interpharm Press, Buffalo Grove, IL, pp 227–233

    Google Scholar 

  53. Horton KD, Ball MHE, Mitchell JP (1992) The calibration of a California measurements PC-2 quartz crystal cascade impactor. J Aerosol Sci 23(5):505–524

    Article  CAS  Google Scholar 

  54. Nasr MM, Ross DL, Miller N (1997) Effect of drug loading and plate coating on the particle size distribution of a commercial albuterol metered dose inhaler (MDI) determined using the Andersen and Marple–Miller cascade impactor. Pharm Res 14(10):1437–1443

    Article  PubMed  CAS  Google Scholar 

  55. Mitchell J (2003) Practices of coating collection surfaces of cascade impactors: a survey of members of EPAG, 14th edn, Drug delivery to the lungs-14. The Aerosol Society, London, pp 75–78

    Google Scholar 

  56. Byron PR (1994) Compendial dry powder testing: USP perspectives. In: Byron PR, Dalby RN, Farr SJ (eds) Respiratory drug delivery-IV. Interpharm Press, Buffalo Grove, IL, pp 153–162

    Google Scholar 

  57. Dunbar CA, Hickey AJ, Holzner P (1998) Dispersion and characterization of pharmaceutical dry powder aerosols. KONA Powder Part 16:7–45

    CAS  Google Scholar 

  58. Kamiya A, Sakagami M, Hindle M, Byron PR (2004) Locating particle bounce in the next generation impactor (NGI). In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-IX. Davis Healthcare International Publishing, River Grove, IL, pp 869–871

    Google Scholar 

  59. Berg E, Svensson JO, Asking L (2007) Determination of nebulizer droplet size distribution: a method based on impactor refrigeration. J Aerosol Med 20(2):97–104

    Article  PubMed  CAS  Google Scholar 

  60. Kamiya A, Sakagami M, Hindle M, Byron PR (2004) Aerodynamic sizing of metered dose inhalers: an evaluation of the Andersen and next generation pharmaceutical impactors and their USP methods. J Pharm Sci 93(7):1828–1837

    Article  PubMed  CAS  Google Scholar 

  61. Nasr MM, Allgire JF (1995) Loading effect on particle size measurements by inertial sampling of albuterol metered dose inhalers. Pharm Res 12(11):1677–1681

    Article  PubMed  CAS  Google Scholar 

  62. Feddah MR, Davies NM (2003) Influence of single versus multiple actuations on the particle size distribution of beclomethasone dipropionate metered-dose inhalers. J Pharm Pharmacol 55(8):1055–1061

    Article  PubMed  CAS  Google Scholar 

  63. Merrin C, Lee S, Needham M, Chambers F (2003) Evaluation of NGI performance with high dose pMDIs, 14th edn, Drug delivery to the lungs-14. The Aerosol Society, London, pp 184–187

    Google Scholar 

  64. Copley M (2007) Understanding cascade impaction and its importance for inhaler testing. Copley Scientific Ltd Technical Briefing, Available at: http://www.copleyscientific.co.uk/documents/ww/Understanding%20Cascade%20Impaction%20White%20Paper.pdf. Visited 10 Jan 2012

  65. MSP Corporation (2007) NGI User’s Guide. NGI-0170-6001, Revision C. Available at: http://www.epag.co.uk/Download2.asp?DID=902. Visited 10 Jan 2012

  66. Mitchell JP (2006) Cleaning: a survey of members of the European Pharmaceutical Aerosol Group (EPAG), 17th edn, Drug delivery to the lungs-XVII. The Aerosol Society, Edinburgh, pp 197–199

    Google Scholar 

  67. Mitchell JP, Costa PA, Waters S (1987) An assessment of an Andersen Mark-II cascade impactor. J Aerosol Sci 19(2):213–221

    Article  Google Scholar 

  68. European Directorate for Quality of Medicines and Healthcare (EDQM) (2012) Preparations for nebulisation. Section 2.9.44—European Pharmacopeia, Council of Europe, 67075 Strasbourg, France

    Google Scholar 

  69. Dolovich M, Rhem R (1998) Impact of oropharyngeal deposition on inhaled dose. J Aerosol Med S1:S112–S121

    Google Scholar 

  70. Harris D, Chaudhry S, Chaudry I, Li S, Sequeira J, Wyka B (1996) Influence of entry-port design on drug deposition in cascade-impactor from metered-dose inhalers. AAPS Annual Meeting. AAPS Poster Session, 1996

    Google Scholar 

  71. Van Oort M, Downey B (1996) Cascade impaction of MDIs and DPIs: proposal of induction port, inlet cone, and pre-separator lid designs for inclusion in general chapter <601> Pharm Forum 22(2):2204–2210

    Google Scholar 

  72. US Pharmacopeial Convention (2010) Chapter 1601: Products for nebulization—characterization tests. In Process Revision, Pharm Forum 36(2):534–538

    Google Scholar 

  73. Keil JC, Reshima K, Peart J (2006) Using and interpreting aerosol electrostatic data from the electrical low pressure impactor. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ (eds) Respiratory drug delivery-2006. Davis Healthcare International Publishing, River Grove, IL, pp 267–277

    Google Scholar 

  74. Peart J, Orban JC, McGlynn P, Redmon M, Sargeant CM, Byron PR (2002) MDI electrostatics: valve and formulation interactions which really make a difference. In: Dalby RN, Byron PR, Peart J, Farr SJ (eds) Respiratory drug delivery-VIII. Davis Healthcare International Publishing, River Grove, IL, pp 223–230

    Google Scholar 

  75. Bagger-Jörgensen H, Sandell D, Lundbäck H, Sundahl M (2005) Effect of inherent variability of inhalation products on impactor mass balance limits. J Aerosol Med 18(4):367–378

    Article  PubMed  Google Scholar 

  76. Product Quality Research Institute (2012) Information about PQRI as well as reports of WG meetings can be found at: http://www.pqri.org/. Visited 10 Jan 2012

  77. Mitchell JP, Bauer R, Lyapustina S, Tougas T, Glaab V (2011) Non-impactor-based methods for sizing of aerosols emitted from orally inhaled and nasal drug products (OINDPs). AAPS PharmSciTech 12(3):965–988

    Article  PubMed  CAS  Google Scholar 

  78. Mitchell JP, Dunbar C (2005) Analysis of cascade impactor mass distributions. J Aerosol Med 18(4):439–451

    Article  PubMed  Google Scholar 

  79. Christopher JD, Dey M, Lyapustina S, Mitchell JP, Tougas TP, Van Oort M, Strickland H, Wyka B (2010) Generalized simplified approaches for mass median aerodynamic determination. Pharm Forum 36(3):812–823

    Google Scholar 

  80. Mitchell JP, Nagel MW (2000) Spacer and holding chamber testing in vitro: a critical analysis with examples. In: Dalby RN, Byron PR, Farr SJ, Peart J (eds) Respiratory drug delivery-VII. Serentec Press, Raleigh, NC, pp 265–274

    Google Scholar 

  81. Lefebvre AH (1989) Atomization and sprays. Taylor and Francis, Hemisphere Publishing Corporation, New York, NY

    Google Scholar 

  82. Lewis DA (2008) New cascade impactor software. Inhalation 2(4):7–10

    Google Scholar 

  83. Hinds WC (1998) Properties, behavior, and measurement of airborne particles, 2nd edn. Wiley-Interscience, New York, NY, pp 75–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolyon P. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mitchell, J.P. (2013). Good Cascade Impactor Practices. In: Tougas, T., Mitchell, J., Lyapustina, S. (eds) Good Cascade Impactor Practices, AIM and EDA for Orally Inhaled Products. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6296-5_4

Download citation

Publish with us

Policies and ethics