Skip to main content

Muscle Oxygen Saturation Measurements in Diving Mammals and Birds Using NIRS

  • Chapter
  • First Online:
Application of Near Infrared Spectroscopy in Biomedicine

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 4))

  • 1998 Accesses

Abstract

Near-infrared spectroscopy (NIRS) principles have been applied to study muscle oxygen (O2) saturation in diving mammals and birds. Custom-made NIRS instruments and probes were developed to measure myoglobin (Mb) O2 saturation levels in two studies conducted in Antarctica at isolated dive holes on the sea ice of McMurdo Sound on freely-diving Weddell seals (Leptonychotes weddellii) and on freely diving emperor penguins (Aptenodytes forsteri). Studies also used a modified, commercially available NIRS instrument (Vander Niroscope) to measure muscle O2 levels in trained harbor seals for simulated dives using a helmet that filled with water for specific time periods. The present chapter will focus on NIRS principles and the development and application of custom-made instruments and the methodology to study diving mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guyton GP, Stanek KS, Schneider RC, Hochachka PW, Hurford WE, Zapol DG, Liggins GC, Zapol WM (1995) Myoglobin saturation in free-diving Weddell seals. J Appl Physiol 79:1148–1155

    PubMed  CAS  Google Scholar 

  2. Williams CL, Meir JU, Ponganis PJ (2011) What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. J Exp Biol 214:1802–1812

    Article  PubMed  Google Scholar 

  3. Jöbsis PD, Ponganis PJ, Kooyman GL (2001) Effects of training on forced submersion responses in harbor seals. J Exp Biol 204:3877–3885

    PubMed  Google Scholar 

  4. Butler PJ, Jones DR (1997) The physiology of diving of birds and mammals. Physiol Rev 77:837–899

    PubMed  CAS  Google Scholar 

  5. Ponganis PJ (2011) Diving mammals. Compr Physiol 1:517–535. doi:10.1002/cphy.c091003

    PubMed  Google Scholar 

  6. Burns JM, Skomp N, Bishop N, Lestyk K, Hammill M (2010) Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals. J Exp Biol 213:740–748

    Article  PubMed  CAS  Google Scholar 

  7. Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hval Skrift 22:1–131

    Google Scholar 

  8. Scholander PF, Irving L, Grinnell SW (1942) Aerobic and anaerobic changes in seal muscle during diving. J Biol Chem 142:431–440

    CAS  Google Scholar 

  9. Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals Leptonychotes-weddelli evidence of preferred pathways from blood chemistry and behavior. J Comp Physiol B 138:335–346

    Article  CAS  Google Scholar 

  10. Ponganis PJ, Kooyman GL, Starke LN, Kooyman CA, Kooyman TG (1997) Post-dive blood lactate concentrations in emperor penguins, Aptenodytes forsteri. J Exp Biol 200:1623–1626

    PubMed  CAS  Google Scholar 

  11. Ponganis PJ, Stockard TK, Meir JU, Williams CL, Ponganis KV, Howard R (2009) O2 store management in diving emperor penguins. J Exp Biol 212:217–224

    Article  PubMed  CAS  Google Scholar 

  12. Elsner R (1965) Heart rate response in forced versus trained experimental dives of pinnipeds. Hval Skrift 48:24–29

    Google Scholar 

  13. Kooyman GL, Campbell WB (1973) Heart rate in freely diving Weddell seals, Leptonychotes weddelli. Comp Biochem Physiol A Physiol 43:31–36

    Google Scholar 

  14. Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL, Guppy M, Hochachka PW, Qvist J, Falke KJ, Zapol WM (1987) Heart rate and body temperature during free diving of Weddell seals. Am J Physiol 253:R344–R351

    PubMed  CAS  Google Scholar 

  15. Fedak MA, Pullen MR, Kanwisher J (1988) Circulatory responses of seals to periodic breathing: heart rate and breathing during exercise and diving in the laboratory and open sea. Can J Zool 66:53–60

    Article  Google Scholar 

  16. Thompson D, Fedak MA (1993) Cardiac responses of grey seals during diving at sea. J Exp Biol 174:139–164

    PubMed  CAS  Google Scholar 

  17. Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ (1997) Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200:2083–2095

    PubMed  CAS  Google Scholar 

  18. Ponganis PJ, Kooyman GL, Winter LM, Starke LN (1997) Heart rate and plasma lactate responses during submerged swimming and trained diving in California sea lions, Zalophus californianus. J Comp Physiol B 167:9–16

    Article  PubMed  CAS  Google Scholar 

  19. Ponganis PJ, Kooyman GL, Baranov EA, Thorson PH, Stewart BS (1997) The aerobic submersion limit of Baikal seals, Phoca sibirica. Can J Zool 75:1323–1327

    Article  Google Scholar 

  20. Meir JU, Stockard TK, Williams CL, Ponganis KV, Ponganis PJ (2008) Heart rate regulation and extreme bradycardia in diving emperor penguins. J Exp Biol 211:1169–1179

    Article  PubMed  Google Scholar 

  21. Hindell MA, Lea MA (1998) Heart rate, swimming speed, and estimated oxygen consumption of a free-ranging southern elephant seal. Physiol Zool 71:74–84

    Article  PubMed  CAS  Google Scholar 

  22. Ponganis PJ, Kreutzer U, Sailasuta N, Knower T, Hurd R, Jue T (2002) Detection of myoglobin desaturation in Mirounga angustirostris during apnea. Am J Physiol Regul Integr Comp Physiol 282:R267–R272

    PubMed  CAS  Google Scholar 

  23. Ponganis PJ, Kreutzer U, Stockard TK, Lin PC, Sailasuta N, Tran TK, Hurd R, Jue T (2008) Blood flow and metabolic regulation in seal muscle during apnea. J Exp Biol 211:3323–3332

    Article  PubMed  CAS  Google Scholar 

  24. Hassrick JL, Crocker DE, Teutschel NM, McDonald BI, Robinson PW, Simmons SE, Costa DP (2010) Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals. J Exp Biol 213:585–592

    Article  PubMed  CAS  Google Scholar 

  25. Le Boeuf BJ, Morris PA, Blackwell SA, Crocker DE, Costa DP (1996) Diving behavior of juvenile northern elephant seals. Can J Zool 74:1632–1644

    Article  Google Scholar 

  26. Le Boeuf BJ, Costa DP, Huntley AC, Feldkamp SD (1988) Continuous, deep diving in female northern seals, Mirounga angustirostris. Can J Zool 66:446–458

    Article  Google Scholar 

  27. Blackwell SB, LeBoeuf BJ (1993) Developmental aspects of sleep apnea in northern elephant seals, Mirounga angustirostris. J Zool (Lond) 2331:437–447

    Article  Google Scholar 

  28. Jöbsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  Google Scholar 

  29. Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR (1994) Validation of near-infrared spectroscopy in humans. J Appl Physiol 77:2740–2747

    PubMed  CAS  Google Scholar 

  30. Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T (1999) Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 276:R1682–R1690

    CAS  Google Scholar 

  31. Wilson JR, Mancini DM, McCully K, Ferraro N, Lanoce V, Chance B (1989) Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation 80:1668–1674

    Article  PubMed  CAS  Google Scholar 

  32. Kanatous SB, DiMichele LV, Cowan DF, Davis RW (1999) High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. J Appl Physiol 86:1247–1256

    PubMed  CAS  Google Scholar 

  33. Howell AB (1930) Aquatic mammals. Dover, New York

    Google Scholar 

  34. Duran WN, Renkin EM (1974) Oxygen-consumption and blood-flow in resting mammalian skeletal muscle. Am J Physiol 226:173–177

    PubMed  CAS  Google Scholar 

  35. Hogan MC, Nioka S, Brechue WF, Chance B (1992) A 31P-NMR study of tissue respiration in working dog muscle during reduced O2 delivery conditions. J Appl Physiol 73:1662–1670

    PubMed  CAS  Google Scholar 

  36. Hogan MC, Kurdak SS, Arthur PG (1996) Effect of gradual reduction in O2 delivery on intracellular homeostasis in contracting skeletal muscle. J Appl Physiol 80:1313–1321

    PubMed  CAS  Google Scholar 

  37. Piiper J, Pendergast DR, Marconi C, Meyer M, Heisler N, Cerretelli P (1985) Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J Appl Physiol 58:2068–2074

    PubMed  CAS  Google Scholar 

  38. Mizuno M, Kimura Y, Iwakawa T, Oda K, Ishii K, Ishiwata K, Nakamura Y, Muraoka I (2003) Regional differences in blood flow and oxygen consumption in resting muscle and their relationship during recovery from exhaustive exercise. J Appl Physiol 95:2204–2210

    PubMed  Google Scholar 

  39. Hogan MC, Gladden LB, Grassi B, Stary CM, Samaja M (1998) Bioenergetics of contracting skeletal muscle after partial reduction of blood flow. J Appl Physiol 84:1882–1888

    PubMed  CAS  Google Scholar 

  40. van Dam RP, Ponganis PJ, Ponganis KV, Levenson DH, Marshall G (2002) Stroke frequencies of emperor penguins diving under sea ice. J Exp Biol 205:3769–3774

    PubMed  Google Scholar 

  41. Kanatous SB, Elsner R, Mathieu-Costello O (2001) Muscle capillary supply in harbor seals. J Appl Physiol 90:1919–1926

    PubMed  CAS  Google Scholar 

  42. Karas RH, Taylor CR, Rosler K, Hoppeler H (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand, V: limits to oxygen transport by the circulation. Respir Physiol 69:65–79

    Article  Google Scholar 

  43. Kayar SR, Hoppeler H, Jones JH, Longworth K, Armstrong RB, Laughlin MH, Lindstedt SL, Bicudo JE, Groebe K, Taylor CR et al (1994) Capillary blood transit time in muscles in relation to body size and aerobic capacity. J Exp Biol 194:69–81

    PubMed  CAS  Google Scholar 

  44. Polasek LK, Dickson KA, Davis RW (2006) Metabolic indicators in the skeletal muscles of harbor seals Phoca vitulina. Am J Physiol Regul Integr Comp Physiol 290:1720–1727

    Article  Google Scholar 

  45. Willford DC, Gray AT, Hempleman SC, Davis RC, Hill EP (1990) Temperature and the oxygen–hemoglobin dissociation curve of the harbor seal, Phoca vitulina. Respir Physiol 79:137–144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding support from NSF grant 0944220. CLW was supported by an NIH-NIAMS grant (T32AR047752 to V. Caiozzo) for the UC Irvine Multidisciplinary Exercise Sciences Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassondra L. Williams Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problem

  1. 7.1.

    What is the ratio of Mb to Hb in a gram of the locomotory muscle of a seal versus that of a dog? (see [41–45]).

Further Reading

Guyton GP, Stanek KS, Schneider RC, Hochachka PW,Hurford WE, Zapol DG, Liggins GC, Zapol WM (1995) Myoglobin saturation in free-diving Weddell seals. J Appl Physiol 79:1148–1135

Jöbsis PD, Ponganis PJ, Kooyman GL (2001) Effects of training on forced submersion responses in harbor seals. J Exp Biol 204:3877–3885

Jöbsis PD (1998) Muscle oxygenation and blood flow during submersion in ducks (Anas platyrhynchos) and seals (Phoca vitulina). Ph.D. dissertation, University of California, San Diego, 142pp

Williams CL, Meir JU, Ponganis PJ (2011) What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins. J Exp Biol 214:1802–1812

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, C.L., Ponganis, P.J. (2013). Muscle Oxygen Saturation Measurements in Diving Mammals and Birds Using NIRS. In: Jue, T., Masuda, K. (eds) Application of Near Infrared Spectroscopy in Biomedicine. Handbook of Modern Biophysics, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6252-1_7

Download citation

Publish with us

Policies and ethics