Skip to main content

Biodiesel

  • Reference work entry
  • First Online:
Renewable Energy Systems

Definition of the Subject and Its Importance

The transport sector is one the fastest growing segment using fossil-based products. Especially because of the economic development in countries like India and China, there is a need for high mobility and transport. Today’s transport system is based on combustion engines using fossil fuels, leading to a sharp increase of emissions of green house gases (GHG) within the last decades. Furthermore, for most of the industrialized countries there is a strong dependency on oil-producing countries, which could cause political conflicts and even wars. Therefore, especially in times of a sharp increase in crude oil prices, the question of alternative fuels or transport systems is highly discussed. Moreover, the effects of global warming caused by the increased emissions of green house gases stimulate the call for alternative fuels. For kinds of energy like electricity and heating power,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Biodiesel:

Fatty acid methyl or ethyl esters made out of fatty acid material.

Catalyst:

Chemical compound that increases the reaction rate of a chemical reaction, either soluble (homogenous) or insoluble (heterogeneous).

BtL fuels:

Fuels made out of biomass by gasification and further synthesis with Fischer–Tropsch catalysts.

Esterification:

Chemical reaction of a carboxylic acid with an alcohol forming a carboxylic ester and water.

Feedstocks:

Any vegetable oil, animal fat, waste oils like used cooking oil, fatty acids.

Green house gas (GHG) savings:

Saving of the emissions of green house gases of a biofuel in the whole production chain in comparison to fossil fuel.

Life cycle analysis:

Assessment of the environmental impacts of a given product caused by its production and use.

Transesterification:

Chemical reaction of a carboxylic ester with an alcohol or a carboxylic acid in order to obtain another carboxylic ester.

Bibliography

Primary Literature

  1. Knothe G (2001) Historical perspectives on vegetable oil-based diesel fuels. Inform 12:1103–1107

    Google Scholar 

  2. Duffy P (1852) On the constitution of stearine. J Chem Soc 5:303

    Google Scholar 

  3. Bradshaw GB (1941) Preparation of detergents. US Patent 2 360 844 xc

    Google Scholar 

  4. Improvements in or relating to methods of alcoholysis of low grade fatty materials (1946). Patent GB 612,667

    Google Scholar 

  5. Mittelbach M, Wörgetter M, Pernkopf J, Junek H (1983) Diesel fuel derived from vegetable oils: preparation and use of rape oil methyl ester. Energ Agr 2:369–384

    Article  Google Scholar 

  6. Mittelbach M, Andrae F, Junek H (1986) Verfahren und Vorrichtung zur Herstellung eines als Kraft-bzw. Brennstoffs geeigneten Fettsäureestergemisches. Austrian Patent AT 386 222 B

    Google Scholar 

  7. Wang R (1988) Development of biodiesel fuel. Taiyangneng Xuebao 9:434–436

    Google Scholar 

  8. Bailer J, de Hueber K (1991) Determination of saponifiable glycerol in “Bio-Diesel”. Fresenius J Anal Chem 340:186

    Article  Google Scholar 

  9. Argentine Renewable Energies Chamber (2009) State of the Argentine biodiesel industry, First Semester 2009

    Google Scholar 

  10. European Biodiesel Board (2010) http://www.ebb-eu.org/stats.php

  11. USDA Foreign Agricultural Service (2009) EU-27 biofuels annual

    Google Scholar 

  12. Chemical Abstracts Service (CAS), SciFinder (2010) American chemical society

    Google Scholar 

  13. Gübitz G, Mittelbach M, Trabi M (1997) Biofuels and industrial products from Jatropha curcas. DbV-Verlag für die Technische Universität Graz, Graz

    Google Scholar 

  14. Carels N (2009) Jatropha curcas: a review. Adv Bot Res 50:39–86

    Article  Google Scholar 

  15. King A, He W, Cuevas J, Freudenberger M, Ramiaramanana D, Graham I (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905

    Article  Google Scholar 

  16. Debnath M, Bisen P (2008) Jatropha curcas L., a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharm Biotechnol 9:288–306

    Article  Google Scholar 

  17. Achten W, Verchot L, Franken Y, Mathijs E, Singh V, Aerts R, Muys B (2008) Alternative uses of Jatropha oil cake. Biomass Bioenergy 32:1063–1084

    Article  Google Scholar 

  18. Rakshit K, Darukeshwara J, Raj K, Narasimhamurthy K, Saibaba P, Bhagya S (2008) Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. Food Chem Toxicol 46:3621–3625

    Article  Google Scholar 

  19. Devappa R, Swamylingappa B (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88:911–919

    Article  Google Scholar 

  20. Pienkos P, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref 3:431–440

    Article  Google Scholar 

  21. Stephens E, Ross I, King Z, Mussgnug J, Kruse O, Posten C, Borowitzka M, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nat Biotechnol 28:126–128

    Article  Google Scholar 

  22. Freedman B, Kwolek W, Pryde H (1986) Quantitation in the analysis of transesterified soybean oil by capillary gas chromatography. J Am Oil Chem Soc 63:1370–1375

    Article  Google Scholar 

  23. Mittelbach M, Koncar M (1994) Process for preparing fatty acid alkyl esters. European Patent EP 0 708 813 B1

    Google Scholar 

  24. Russbueldt B, Hoelderich W (2009) New sulfonic acid ion-exchange resins for the preesterification of different oils and fats with high content of free fatty acids. Appl Catal A 362:47–55

    Article  Google Scholar 

  25. Melero J, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–130

    Article  Google Scholar 

  26. Helwani Z, Othman M, Aziz N, Kim J, Fernando W (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol. Appl Catal A 363:1–10

    Article  Google Scholar 

  27. Stern R, Hillion G, Rouxel J (2000) IFP, US 6,147.196

    Google Scholar 

  28. http://www.ifp.fr/IFP/en/ifp/ab13_02.htm (2010)

  29. Adamczak M, Bornscheuer U, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111:800–813

    Article  Google Scholar 

  30. Choo Y, Ong S (1986) Transesterification of fats and oils. British Patent GB 2 188 057

    Google Scholar 

  31. Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67:168–170

    Article  Google Scholar 

  32. Kusdiana D, Saka S (2001) Methyl esterification of free fatty acids of rapeseed oil as treated in supercritical methanol. J Chem Eng Jpn 34:383–387

    Article  Google Scholar 

  33. Wen D, Jiang H, Zhang K (2009) Supercritical fluids technology for clean biofuel production. Prog Nat Sci 19:273–284

    Article  Google Scholar 

  34. Demirbas A (2006) Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Convers Manage 47:2271–2282

    Article  Google Scholar 

  35. Kusdiana D, Saka S (2004) Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol 91:289–295

    Article  Google Scholar 

  36. Cao P, Dube M, Tremblay A (2008) Methanol recycling in the production of biodiesel in a membrane reactor. Fuel 87:825–833

    Article  Google Scholar 

  37. Kalva A, Sivasankar T, Moholkar V (2009) Physical mechanism of ultrasound assisted synthesis of biodiesel. Ind Eng Chem Res 48:534–544

    Article  Google Scholar 

  38. Geuens J, Kremsner J, Nebel B, Schober S, Dommisse R, Mittelbach M, Tavernier S, Kappe C, Maes B (2008) Microwave assisted catalyst free transesterfication of triglycerides with 1-butanol under supercritical conditions. Energy Fuels 22:643–645

    Article  Google Scholar 

  39. Mahajan S, Konar S, Boocock D (2006) Standard biodiesel from soybean oil by a single chemical reaction. J Am Oil Chem Soc 83:641–644

    Article  Google Scholar 

  40. Haas M, Scott K, Foglia T, Marmer W (2007) The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks. J Am Oil Chem Soc 84:963–970

    Article  Google Scholar 

  41. EN 14214 (2008) Automotive fuels – fatty acid methyl esters (FAME) for diesel engines – requirements and test methods, CEN

    Google Scholar 

  42. ASTM D6751 (2009) Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM

    Google Scholar 

  43. Fabri J, Dabelstein W, Reglitzky A (1990) Ullmann’s encyclopedia of industrial chemistry, vol A 16, 5th edn. Weinheim, Basel/Cambridge/New York

    Google Scholar 

  44. Kroschwitz J, Howe-Grant M (1994) Kirk-Othmer encyclopedia of chemical technology, vol 12, 4th edn. Wiley, New York/Chichester/Brisbane/Toronto/Singapore

    Google Scholar 

  45. Guttmann H, Preuss A, Schädlich K, Schug K (1998) Breaking the link between NO x and particulate emissions of diesel engines – potential of fuels and exhaust aftertreatment measures. Proceedings of the 15th World Petroleum Congress. Wiley, New York, pp 633–643

    Google Scholar 

  46. Tschöke H (1998) Ist eine spezielle Motorenentwicklung für Biodiesel notwendig? Landbauforschung Völkenrode. Sonderheft 190 (Biodiesel Optimierungspotentiale und Umwelteffekte) (1998), pp 81–87

    Google Scholar 

  47. Regulation (EC) No 443/2009 of the European parliament and of the council setting emission performance standards for new passenger cars as part of the community’s integrated approach to reduce CO2 emissions from light-duty vehicles

    Google Scholar 

  48. Yanowitz J, McCormick R (2009) Effect of biodiesel blends on North American heavy-duty diesel engine emissions. Eur J Lipid Sci Technol 111:763–772

    Article  Google Scholar 

  49. Mittelbach M, Tritthart P, Junek H (1985) Diesel fuel derived from vegetable oils, II: emission tests using rape oil methyl ester. Energ Agr 4:207–215

    Article  Google Scholar 

  50. Vellguth G (1988) Pflanzenöl als Dieselkraftstoff-Substitut. Sonderdruck aus Landbauforschung Völkenrode 1:12–16

    Google Scholar 

  51. Apfelbeck R, Gessner B (1992) Untersuchung der Abgaszusammensetzung von Dieselmotoren beim Betrieb mit Rapsöl und Rapsölmethylester sowie deren Mischungen mit Dieselkraftstoff. In Gelbes Heft No 40, TU München. Bayrische Landesanstalt für Landtechnik Freising-Weihenstephen

    Google Scholar 

  52. Scharmer K, Glüsing H, Krings L, Zimalla K (1995) Standardanforderungen an Rapsölmethylester als Motorkraftstoff. BMFT-Studie TV 91021

    Google Scholar 

  53. Krahl J, Prieger K, Munack A, Bünger J (1996) Übersicht über Emissionen von Rapsölkraftstoffen und deren Umweltauswirkungen. VDI-Berichte Nr. 1297. VDI-Verlag, Düsseldorf

    Google Scholar 

  54. Sharp C (1996) Emissions and lubricity evaluation of rapeseed derived biodiesel fuels. Final report from SWRI to Montana department of environmental quality

    Google Scholar 

  55. May H, Hattingen U, Klee P, Spitz M (1997) Vergleichende Emissionsuntersuchungen beim Betrieb verschiedener Dieselmotoren mit Dieselkraftstoff und Rapsmethylester. MTZ Motortechnische Zeitschrift 58

    Google Scholar 

  56. Goerke D (1998) Ansatzpunkte zur Verbesserung der Wettbewerbsfähigkeit von Pflanzenöl als Treibstoff gegenüber Dieselkraftstoff. Fortschritt-Bericht VDI. Reihe 12 Verkehrstechnik Nr. 368. VDI-Verlag, Düsseldorf

    Google Scholar 

  57. Sams T (1998) Exhaust components of biofuels under real world engine conditions. Plant oils as fuels. Present state of science and future developments. Proceedings of the symposium held in Potsdam, Germany. Springer Verlag, Berlin, 16–18 Feb 1997

    Google Scholar 

  58. Krahl J, Munack A, Schröder O, Stein H, Dutz M, Bünger J (2003) Comparison of biodiesel with different diesel fuels. Fuels 2003. Conference held at Technische Akademie Esslingen

    Google Scholar 

  59. Makareviciene V, Janulis P (2003) Environmental effect of rapeseed oil ethyl ester. Renewable Energy 28:2395–2403

    Article  Google Scholar 

  60. Directive 2003/30/EC of the European parliament and of the council on the promotion of the use of biofuels or other renewable fuels for transport

    Google Scholar 

  61. Directive 2009/28/EC of the European parliament and of the council on the promotion of the use of energy from renewable sources

    Google Scholar 

  62. Majer S, Mueller-Langer F, Zeller V, Kaltschmitt M (2009) Implications of biodiesel production and utilisation on global climate – a literature review. Eur J Lipid Sci Technol 111:747–762

    Article  Google Scholar 

  63. International Standardization Organization, ISO 14040–43. Environmental management life cycle assessment – principles and framework. Beuth Verlag, Berlin

    Google Scholar 

  64. Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930

    Article  Google Scholar 

  65. Gärtner S, Reinhardt G (2004) Environmental implications of biodiesel (Life-cycle assessment). In: Knothe G, Krahl J, van Gerpen J (eds) The biodiesel handbook. AOCS Press, Champaign

    Google Scholar 

  66. Lam M, Lee K, Mohamed A (2009) Life cycle assessment for the production of biodiesel: a case study in Malaysia for palm oil versus jatropha oil. Biofuels Bioprod Biorefin 3:601–612

    Article  Google Scholar 

  67. Pleanjai S, Gheewala S (2009) Full chain energy analysis of biodiesel production from palm oil in Thailand. Appl Energy 86:209–S214

    Article  Google Scholar 

  68. Jungmeier G, Spitzer J, Hofbauer H, Fürnsinn S, Wörgetter M, Bacovsky D, Lingitz A, Kaltenegger, Königshofer H (2009) F&E-Strategie für Biokraftstoffe

    Google Scholar 

Books and Reviews

  • Balat M (2009) Biodiesel fuel from triglycerides via transesterification – a review. Energy Sources A 31:1300–1314

    Article  Google Scholar 

  • Demirbas M (2010) Micro-algae as a feedstock for biodiesel energy education science and technology, part A. Energ Sci Res 25:31–43

    Google Scholar 

  • Fukuda H (2009) Enzymatic production of biodiesel. In: Soetaert W, Vandamme E (eds) Biofuels. Wiley, New York, pp 129–151

    Chapter  Google Scholar 

  • Knothe G, Krahl J, Van Gerpen J (eds) (2009) The biodiesel handbook, 2nd edn. American Oil Chemists’ Society, ISBN 978-1-893997-62-2

    Google Scholar 

  • Mittelbach M (2009) Process technologies for biodiesel production. In: Soetaert W, Vandamme E (eds) Biofuels (Wiley series in renewable resources). Wiley, New York

    Google Scholar 

  • Mittelbach M, Remschmidt C (2006) In: Mittelbach M (ed) Biodiesel, the comprehensive handbook. Graz, ISBN: 3-200-00249-2

    Google Scholar 

  • Moser B (2009) Biodiesel production, properties, and feedstocks. In vitro cellular & developmental biology. Plant J 45:229–266

    Google Scholar 

  • Murugesan A, Umarani C, Chinnusamy T, Krishnan M, Subramanian R, Neduzchezhain N (2009) Production and analysis of bio-diesel from non-edible oils-a review. Renewable Sustainable Energy Rev 13:825–834

    Article  Google Scholar 

  • Ravasio N, Zaccheria F, Psaro R (2009) The use of catalysis in the production of high-quality biodiesel. In: Barbaro P, Bianchini C (eds) Catalysis for sustainable energy production., pp 323–344

    Google Scholar 

  • Verhe R, Stevens C (2009) Production of biodiesel from waste lipids. In: Soetaert W, Vandamme E (eds) Biofuels. Wiley, New York, pp 153–170

    Chapter  Google Scholar 

  • Vyas A, Verma J, Subrahmanyam N (2009) A review on FAME production processes. Fuel 89:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mittelbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Mittelbach, M. (2013). Biodiesel . In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_311

Download citation

Publish with us

Policies and ethics