Skip to main content

MSC Niche for Hematopoiesis

  • Chapter
  • First Online:
Mesenchymal Stromal Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1510 Accesses

Abstract

Blood cell production is maintained throughout life by hematopoietic stem cells (HSC), which reside in specific areas of the bone marrow (BM) referred to as niches. These niches regulate the self-renewal, proliferation, and migration of HSC and also integrate signals from the periphery to respond to the hematopoietic demand. In the last decade, several putative cellular components of the HSC niche have been identified. Here, we briefly review current knowledge on different putative niche cells and their regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kondo M (2009) Principles of Hematopoietic Stem Cell Biology. In: Kondo M (ed) Hematopoietic stem cell biology. Humana Press, New York

    Google Scholar 

  2. Dick JE, Magli MC, Huszar D, Phillips RA, Bernstein A (1985) Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42(1):71–79

    Article  PubMed  CAS  Google Scholar 

  3. Keller G, Paige C, Gilboa E, Wagner EF (1985) Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318(6042):149–154

    Article  PubMed  CAS  Google Scholar 

  4. Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45(6):917–927

    Article  PubMed  CAS  Google Scholar 

  5. Soiffer RJ (2008). In: Karp JE (ed) Hematopoietic stem cell transplantation. Humana Press, New York

    Google Scholar 

  6. Magnon C, Frenette PS (2008) Hematopoietic stem cell trafficking. In: StemBook (ed) The stem cell research community. Stembook. http://www.stembook.org, January 2012

  7. Trentin J (1989) Hematopoietic microenviroments. In: Tavassoli M (ed) Handbook of the hematopoietic microenviroment. Humana Press, New York, pp 1–86

    Chapter  Google Scholar 

  8. Askmyr M, Sims NA, Martin TJ, Purton LE (2009) What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab 20(6):303–309

    Article  PubMed  CAS  Google Scholar 

  9. Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8(4):290–301

    Article  PubMed  CAS  Google Scholar 

  10. Lymperi S, Ferraro F, Scadden DT (2010) The HSC niche concept has turned 31. Has our knowledge matured? Ann N Y Acad Sci 1192:12–18

    Article  PubMed  CAS  Google Scholar 

  11. Mendez-Ferrer S, Chow A, Merad M, Frenette PS (2009) Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol 16(4):235–242

    Article  PubMed  CAS  Google Scholar 

  12. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857

    Article  PubMed  CAS  Google Scholar 

  13. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129(6):1081–1095

    Article  PubMed  CAS  Google Scholar 

  14. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA et al (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129(6):1097–1110

    Article  PubMed  CAS  Google Scholar 

  15. Kim YW, Koo BK, Jeong HW, Yoon MJ, Song R, Shin J et al (2008) Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 112(12):4628–4638

    Article  PubMed  CAS  Google Scholar 

  16. Lane SW, Scadden DT, Gilliland DG (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114(6):1150–1157

    Article  PubMed  CAS  Google Scholar 

  17. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312

    Article  PubMed  CAS  Google Scholar 

  18. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    PubMed  CAS  Google Scholar 

  19. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    Article  PubMed  CAS  Google Scholar 

  21. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  PubMed  CAS  Google Scholar 

  22. Dexter TM, Allen TD, Lajtha LG, Schofield R, Lord BI (1973) Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol 82(3):461–473

    Article  PubMed  CAS  Google Scholar 

  23. Dexter TM, Lajtha LG (1974) Proliferation of haemopoietic stem cells in vitro. Br J Haematol 28(4):525–530

    Article  PubMed  CAS  Google Scholar 

  24. Dexter TM, Wright EG, Krizsa F, Lajtha LG (1977) Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine 27(9–10):344–349

    PubMed  CAS  Google Scholar 

  25. Friedenstein AJ, Latzinik NW, Grosheva AG, Gorskaya UF (1982) Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 10(2):217–227

    PubMed  CAS  Google Scholar 

  26. Fliedner TM, Calvo W, Klinnert V, Nothdurft W, Prummer O, Raghavachar A (1985) Bone marrow structure and its possible significance for hematopoietic cell renewal. Ann N Y Acad Sci 459:73–84

    Article  PubMed  CAS  Google Scholar 

  27. Weiss L (1976) The hematopoietic microenvironment of the bone marrow: an ultrastructural study of the stroma in rats. Anat Rec 186(2):161–184

    Article  PubMed  CAS  Google Scholar 

  28. Westen H, Bainton DF (1979) Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med 150(4):919–937

    Article  PubMed  CAS  Google Scholar 

  29. Mayani H, Guilbert LJ, Janowska-Wieczorek A (1992) Biology of the hemopoietic microenvironment. Eur J Haematol 49(5):225–233

    Article  PubMed  CAS  Google Scholar 

  30. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    Article  PubMed  CAS  Google Scholar 

  31. Broudy VC, Zuckerman KS, Jetmalani S, Fitchen JH, Bagby GC Jr (1986) Monocytes stimulate fibroblastoid bone marrow stromal cells to produce multilineage hematopoietic growth factors. Blood 68(2):530–534

    PubMed  CAS  Google Scholar 

  32. Sadahira Y, Mori M (1999) Role of the macrophage in erythropoiesis. Pathol Int 49(10):841–848

    Article  PubMed  CAS  Google Scholar 

  33. Fukushima N, Ohkawa H (1995) Hematopoietic stem cells and microenvironment: the proliferation and differentiation of stromal cells. Crit Rev Oncol Hematol 20(3):255–270

    Article  PubMed  CAS  Google Scholar 

  34. Coulombel L, Eaves AC, Eaves CJ (1983) Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer. Blood 62(2):291–297

    PubMed  CAS  Google Scholar 

  35. Funk PE, Kincade PW, Witte PL (1994) Native associations of early hematopoietic stem cells and stromal cells isolated in bone marrow cell aggregates. Blood 83(2):361–369

    PubMed  CAS  Google Scholar 

  36. Prosper F, Verfaillie CM (2001) Regulation of hematopoiesis through adhesion receptors. J Leukoc Biol 69(3):307–316

    PubMed  CAS  Google Scholar 

  37. Kodama H, Nose M, Niida S, Nishikawa S (1994) Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp Hematol 22(10):979–984

    PubMed  CAS  Google Scholar 

  38. Simmons PJ, Masinovsky B, Longenecker BM, Berenson R, Torok-Storb B, Gallatin WM (1992) Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80(2):388–395

    PubMed  CAS  Google Scholar 

  39. Miyake K, Weissman IL, Greenberger JS, Kincade PW (1991) Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med 173(3):599–607

    Article  PubMed  CAS  Google Scholar 

  40. Broxmeyer HE (2001) Regulation of hematopoiesis by chemokine family members. Int J Hematol 74(1):9–17

    Article  PubMed  CAS  Google Scholar 

  41. Williams DA, Rosenblatt MF, Beier DR, Cone RD (1988) Generation of murine stromal cell lines supporting hematopoietic stem cell proliferation by use of recombinant retrovirus vectors encoding simian virus 40 large T antigen. Mol Cell Biol 8(9):3864–3871

    PubMed  CAS  Google Scholar 

  42. Harigaya K, Handa H (1985) Generation of functional clonal cell lines from human bone marrow stroma. Proc Natl Acad Sci USA 82(10):3477–3480

    Article  PubMed  CAS  Google Scholar 

  43. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T et al (1989) Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol 17(2):145–153

    PubMed  CAS  Google Scholar 

  44. Szilvassy SJ, Weller KP, Lin W, Sharma AK, Ho AS, Tsukamoto A et al (1996) Leukemia inhibitory factor upregulates cytokine expression by a murine stromal cell line enabling the maintenance of highly enriched competitive repopulating stem cells. Blood 87(11):4618–4628

    PubMed  CAS  Google Scholar 

  45. Maekawa TL, Takahashi TA, Fujihara M, Urushibara N, Kadowaki-Kikuchi E, Nishikawa M et al (1997) A novel gene (drad-1) expressed in hematopoiesis-supporting stromal cell lines, ST2, PA6 and A54 preadipocytes: use of mRNA differential display. Stem Cells 15(5):334–339

    Article  PubMed  CAS  Google Scholar 

  46. Otsuka E, Yamaguchi A, Hirose S, Hagiwara H (1999) Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am J Physiol 277(1 Pt 1):C132–C138

    PubMed  CAS  Google Scholar 

  47. Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D et al (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56(2):289–301

    PubMed  CAS  Google Scholar 

  48. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78(1):55–62

    PubMed  CAS  Google Scholar 

  49. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 179(5):1677–1682

    Article  PubMed  CAS  Google Scholar 

  50. Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87(2):518–524

    PubMed  CAS  Google Scholar 

  51. Rafii S, Shapiro F, Pettengell R, Ferris B, Nachman RL, Moore MA et al (1995) Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood 86(9):3353–3363

    PubMed  CAS  Google Scholar 

  52. Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116(5):1195–1201

    Article  PubMed  CAS  Google Scholar 

  53. Papayannopoulou T, Scadden DT (2008) Stem-cell ecology and stem cells in motion. Blood 111(8):3923–3930

    Article  PubMed  CAS  Google Scholar 

  54. Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283(15):9499–9503

    Article  PubMed  CAS  Google Scholar 

  55. Lord BI, Testa NG, Hendry JH (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1):65–72

    PubMed  CAS  Google Scholar 

  56. Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199(4336):1443–1445

    Article  PubMed  CAS  Google Scholar 

  57. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299

    Article  PubMed  CAS  Google Scholar 

  58. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J et al (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106(11):1331–1339

    Article  PubMed  CAS  Google Scholar 

  59. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    Article  PubMed  CAS  Google Scholar 

  60. Blair HC, Julian BA, Cao X, Jordan SE, Dong SS (1999) Parathyroid hormone-regulated production of stem cell factor in human osteoblasts and osteoblast-like cells. Biochem Biophys Res Commun 255(3):778–784

    Article  PubMed  CAS  Google Scholar 

  61. Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Mansson R et al (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1(6):671–684

    Article  PubMed  CAS  Google Scholar 

  62. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y et al (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1(6):685–697

    Article  PubMed  CAS  Google Scholar 

  63. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201(11):1781–1791

    Article  PubMed  CAS  Google Scholar 

  64. Kiel MJ, Radice GL, Morrison SJ (2007) Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1(2):204–217

    Article  PubMed  CAS  Google Scholar 

  65. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F (2008) Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood 111(3):1173–1181

    Article  PubMed  CAS  Google Scholar 

  66. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  PubMed  CAS  Google Scholar 

  67. Chute JP, Saini AA, Chute DJ, Wells MR, Clark WB, Harlan DM et al (2002) Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow. Blood 100(13):4433–4439

    Article  PubMed  CAS  Google Scholar 

  68. Li W, Johnson SA, Shelley WC, Yoder MC (2004) Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol 32(12):1226–1237

    Article  PubMed  CAS  Google Scholar 

  69. Chute JP, Muramoto GG, Salter AB, Meadows SK, Rickman DW, Chen B et al (2007) Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109(6):2365–2372

    Article  PubMed  CAS  Google Scholar 

  70. Salter AB, Meadows SK, Muramoto GG, Himburg H, Doan P, Daher P et al (2009) Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113(9):2104–2107

    Article  PubMed  CAS  Google Scholar 

  71. Yao L, Yokota T, Xia L, Kincade PW, McEver RP (2005) Bone marrow dysfunction in mice lacking the cytokine receptor gp130 in endothelial cells. Blood 106(13):4093–4101

    Article  PubMed  CAS  Google Scholar 

  72. Kobayashi H, Butler JM, O’Donnell R, Kobayashi M, Ding BS, Bonner B et al (2010) Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat Cell Biol 12(11):1046–1056

    Article  PubMed  CAS  Google Scholar 

  73. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973

    Article  PubMed  CAS  Google Scholar 

  74. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4(3):263–274

    Article  PubMed  CAS  Google Scholar 

  75. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988

    Article  PubMed  CAS  Google Scholar 

  76. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    Article  PubMed  CAS  Google Scholar 

  77. Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K et al (2009) Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457(7228):490–494

    Article  PubMed  CAS  Google Scholar 

  78. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    Article  PubMed  CAS  Google Scholar 

  79. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452(7186):442–447

    Article  PubMed  CAS  Google Scholar 

  80. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  PubMed  CAS  Google Scholar 

  81. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann S et al (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271

    Article  PubMed  CAS  Google Scholar 

  82. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399

    Article  PubMed  CAS  Google Scholar 

  83. Tabarowski Z, Gibson-Berry K, Felten SY (1996) Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochem 98(4):453–457

    Article  PubMed  CAS  Google Scholar 

  84. Calvo W, Forteza-Vila J (1969) On the development of bone marrow innervation in new-born rats as studied with silver impregnation and electron microscopy. Am J Anat 126(3):355–371

    Article  PubMed  CAS  Google Scholar 

  85. Serre CM, Farlay D, Delmas PD, Chenu C (1999) Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone 25(6):623–629

    Article  PubMed  CAS  Google Scholar 

  86. Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL (1986) Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science 232(4752):868–871

    Article  PubMed  CAS  Google Scholar 

  87. Maestroni GJ (2000) Neurohormones and catecholamines as functional components of the bone marrow microenvironment. Ann N Y Acad Sci 917:29–37

    Article  PubMed  CAS  Google Scholar 

  88. Kalinkovich A, Spiegel A, Shivtiel S, Kollet O, Jordaney N, Piacibello W et al (2009) Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun 23(8):1059–1065

    Article  PubMed  CAS  Google Scholar 

  89. Frenette PS, Weiss L (2000) Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood 96(7):2460–2468

    PubMed  CAS  Google Scholar 

  90. Sweeney EA, Priestley GV, Nakamoto B, Collins RG, Beaudet AL, Papayannopoulou T (2000) Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc Natl Acad Sci USA 97(12):6544–6549

    Article  PubMed  CAS  Google Scholar 

  91. Bosio A, Binczek E, Stoffel W (1996) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci USA 93(23):13280–13285

    Article  PubMed  CAS  Google Scholar 

  92. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K et al (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86(2):209–219

    Article  PubMed  CAS  Google Scholar 

  93. Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95(10):3025–3031

    PubMed  CAS  Google Scholar 

  94. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F et al (2011) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828

    Article  CAS  Google Scholar 

  95. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC (2011) Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med 208(2):251–260

    Article  PubMed  CAS  Google Scholar 

  96. Burnett SH, Beus BJ, Avdiushko R, Qualls J, Kaplan AM, Cohen DA (2006) Development of peritoneal adhesions in macrophage depleted mice. J Surg Res 131(2):296–301

    Article  PubMed  CAS  Google Scholar 

  97. Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174(1–2):83–93

    Article  PubMed  Google Scholar 

  98. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K et al (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244

    PubMed  CAS  Google Scholar 

  99. Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S et al (2005) Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol 174(4):2336–2342

    PubMed  CAS  Google Scholar 

  100. Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M, Tanaka M (2007) Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest 117(8):2268–2278

    Article  PubMed  CAS  Google Scholar 

  101. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12(6):657–664

    Article  PubMed  CAS  Google Scholar 

  102. Lymperi S, Ersek A, Ferraro F, Dazzi F, Horwood NJ (2011) Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117(5):1540–1549

    Article  PubMed  CAS  Google Scholar 

  103. Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J et al (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88(12 Suppl):2961–2978

    Article  PubMed  CAS  Google Scholar 

  104. Kricun ME (1985) Red-yellow marrow conversion: its effect on the location of some solitary bone lesions. Skeletal Radiol 14(1):10–19

    Article  PubMed  CAS  Google Scholar 

  105. Tavassoli M, Maniatis A, Crosby WH (1974) Induction of sustained hemopoiesis in fatty marrow. Blood 43(1):33–38

    PubMed  CAS  Google Scholar 

  106. Touw I, Lowenberg B (1983) No stimulative effect of adipocytes on hematopoiesis in long-term human bone marrow cultures. Blood 61(4):770–774

    PubMed  CAS  Google Scholar 

  107. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N et al (2000) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96(5):1723–1732

    PubMed  CAS  Google Scholar 

  108. Fialkow PJ, Thomas ED, Bryant JI, Neiman PE (1971) Leukaemic transformation of engrafted human marrow cells in vivo. Lancet 1(7693):251–255

    Article  PubMed  CAS  Google Scholar 

  109. Flynn CM, Kaufman DS (2007) Donor cell leukemia: insight into cancer stem cells and the stem cell niche. Blood 109(7):2688–2692

    PubMed  CAS  Google Scholar 

  110. Hertenstein B, Hambach L, Bacigalupo A, Schmitz N, McCann S, Slavin S et al (2005) Development of leukemia in donor cells after allogeneic stem cell transplantation–a survey of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica 90(7):969–975

    PubMed  Google Scholar 

  111. Sala-Torra O, Hanna C, Loken MR, Flowers ME, Maris M, Ladne PA et al (2006) Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 12(5):511–517

    Article  PubMed  Google Scholar 

  112. Varricchio L, Mancini A, Migliaccio AR (2009) Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Rev Hematol 2(3):315–334

    Article  PubMed  CAS  Google Scholar 

  113. Lataillade JJ, Pierre-Louis O, Hasselbalch HC, Uzan G, Jasmin C, Martyre MC et al (2008) Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood 112(8):3026–3035

    Article  PubMed  CAS  Google Scholar 

  114. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13(6):483–495

    Article  PubMed  CAS  Google Scholar 

  115. Ayala F, Dewar R, Kieran M, Kalluri R (2009) Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia 23(12):2233–2241

    Article  PubMed  CAS  Google Scholar 

  116. Bendall LJ, Kortlepel K, Gottlieb DJ (1993) Human acute myeloid leukemia cells bind to bone marrow stroma via a combination of beta-1 and beta-2 integrin mechanisms. Blood 82(10):3125–3132

    PubMed  CAS  Google Scholar 

  117. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322(5909):1861–1865

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Frenette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lucas, D., Pinho, S., Frenette, P.S. (2013). MSC Niche for Hematopoiesis. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_6

Download citation

Publish with us

Policies and ethics