Skip to main content

MSC Therapy of Inborn Errors

  • Chapter
  • First Online:
Mesenchymal Stromal Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1389 Accesses

Abstract

Mesenchymal stromal cells are ideally suited as cell therapy for inborn errors. While there are several potential mechanisms of therapeutic activity, in all studies yet, MSCs seem to exert their effects through the release of soluble mediators. This vast secretome, together with the capacity to modulate gene expression of the MSC therapeutic product through optimal selection of tissue source and ex vivo expansion protocols, suggests the potential to develop broadly applicable therapy for a wide array of disorders. However, the clinical experience to date is limited, most likely due to our unrealized historic view that MSCs were stem cells that could regenerate tissue. A pilot study in children with metachromatic leukodystrophy showed that MSCs may be able to increase nerve conduction velocity, suggesting that the cells may be stimulating remyelination of peripheral nerves. In osteogenesis imperfecta, MSCs unambiguously stimulate growth of the children who exhibit the characteristic severe growth deficiency. As our understanding of the fundamental biology of MSCs continues to improve, enthusiasm to assess MSCs in patients with inborn errors is also growing. The coming decade promises a swell of clinical trials and likely important breakthroughs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human ­mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  2. Horwitz E, LeBlanc K, Dominici M et al (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  PubMed  CAS  Google Scholar 

  3. Pereira RF, O’Hara MD, Laptev AV et al (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 95:1142–1147

    Article  PubMed  CAS  Google Scholar 

  4. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  5. Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264

    Article  PubMed  CAS  Google Scholar 

  6. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  7. Horwitz EM, Dominici M (2008) How do mesenchymal stromal cells exert their therapeutic benefit? Cytotherapy 10:771–774

    Article  PubMed  CAS  Google Scholar 

  8. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  9. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  PubMed  CAS  Google Scholar 

  10. Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–548

    Article  PubMed  CAS  Google Scholar 

  11. Spees JL, Olson SD, Ylostalo J et al (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 100:2397–2402

    Article  PubMed  CAS  Google Scholar 

  12. Olsen I, Muir H, Smith R, Fensom A, Watt DJ (1983) Direct enzyme transfer from lymphocytes is specific. Nature 306:75–77

    Article  PubMed  CAS  Google Scholar 

  13. Abraham D, Muir H, Olsen I, Winchester B (1985) Direct enzyme transfer from lymphocytes corrects a lysosomal storage disease. Biochem Biophys Res Commun 129:417–425

    Article  PubMed  CAS  Google Scholar 

  14. Walkley SU, Thrall MA, Dobrenis K et al (1994) Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease. Proc Natl Acad Sci USA 91:2970–2974

    Article  PubMed  CAS  Google Scholar 

  15. Will A, Cooper A, Hatton C, Sardharwalla IB, Evans DI, Stevens RF (1987) Bone marrow transplantation in the treatment of alpha-mannosidosis. Arch Dis Child 62:1044–1049

    Article  PubMed  CAS  Google Scholar 

  16. Ponomaryov T, Peled A, Petit I et al (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106:1331–1339

    Article  PubMed  CAS  Google Scholar 

  17. Peled A, Petit I, Kollet O et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  PubMed  CAS  Google Scholar 

  18. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  19. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

    Article  PubMed  CAS  Google Scholar 

  20. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  PubMed  CAS  Google Scholar 

  21. Muller I, Kustermann-Kuhn B, Holzwarth C et al (2006) In vitro analysis of multipotent mesenchymal stromal cells as potential cellular therapeutics in neurometabolic diseases in pediatric patients. Exp Hematol 34:1413–1419

    Article  PubMed  Google Scholar 

  22. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  23. Le Blanc K, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586

    Article  PubMed  Google Scholar 

  24. Ren G, Zhang L, Zhao X et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    Article  PubMed  CAS  Google Scholar 

  25. Francois M, Romieu-Mourez R, Li M, Galipeau J (2011) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. doi:10.1038/mt.2011.189

  26. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108:2114–2120

    Article  PubMed  CAS  Google Scholar 

  27. Sudres M, Norol F, Trenado A et al (2006) Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol 176:7761–7767

    PubMed  CAS  Google Scholar 

  28. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  PubMed  CAS  Google Scholar 

  29. Sillence DO (1997) Disorders of bone density, volume, and mineralization. In: Rimoin DL, Connor JM, Pyeritz RE (eds) Emery and Rimoin’s principles and practice of medical genetics, vol II, 3rd edn. Churchill Livingstone, New York, pp 2817–2835

    Google Scholar 

  30. Byers PH, Scriver CR, Beaudet AL, Sly WS, Valle D (1995) Disorders of collagen biosynthesis and structure. The metabolic and molecular bases of inherited disease, vol 7. McGraw-Hill, New York, pp 4029–4077

    Google Scholar 

  31. Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  PubMed  CAS  Google Scholar 

  32. Horwitz EM, Prockop DJ, Gordon PL et al (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231

    Article  PubMed  CAS  Google Scholar 

  33. Horwitz EM, Gordon PL, Koo WKK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  34. Hamill PV, Drizd TA, Johnson CL, Reed RB, Roche AF, Moore WM (1979) Physical growth: national center for health statistics percentiles. Am J Clin Nutr 32:607–629

    PubMed  CAS  Google Scholar 

  35. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  PubMed  Google Scholar 

  36. Horwitz EM (2003) Stem cell plasticity: a new image of the bone marrow stem cell. Curr Opin Pediatr 15:32–37

    Article  PubMed  Google Scholar 

  37. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    Article  PubMed  Google Scholar 

  38. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R (1998) Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339:947–952

    Article  PubMed  CAS  Google Scholar 

  39. Roldan EJ, Pasqualini T, Plantalech L (1999) Bisphosphonates in children with osteogenesis imperfecta may improve bone mineralization but not bone strength. Report of two patients. J Pediatr Endocrinol Metab 12:555–559

    Article  PubMed  CAS  Google Scholar 

  40. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  41. Daly K, Wisbeach A, Sanpera I, Fixsen JA (1996) The prognosis for walking in osteogenesis imperfecta. J Bone Joint Surg Br 78:477–480

    PubMed  CAS  Google Scholar 

  42. Wilkinson JM, Scott BW, Bell MJ (1997) The prognosis for walking in osteogenesis ­imperfecta. J Bone Joint Surg Br 79:339

    Article  PubMed  CAS  Google Scholar 

  43. Engelbert RH, Uiterwaal CS, Gulmans VA, Pruijs H, Helders PJ (2000) Osteogenesis imperfecta in childhood: prognosis for walking. J Pediatr 137:397–402

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin M. Horwitz M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horwitz, E.M. (2013). MSC Therapy of Inborn Errors. In: Hematti, P., Keating, A. (eds) Mesenchymal Stromal Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5711-4_23

Download citation

Publish with us

Policies and ethics