Skip to main content

Oxidative Stress in Diabetes

  • Chapter
  • First Online:
Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

Oxidative stress and diabetes, both Type 1 and Type 2 as well as their related conditions have been extensively studied. As diabetes, obesity and metabolic syndrome have reached at epidemic levels, there is a huge need and effort to understand the detailed molecular mechanisms of the possible redox imbalance, underlying the cause of pathology and progression of the disease. These studies provide new insights at cellular and subcellular levels to design effective clinical interventions. This chapter is intended to emphasize the latest knowledge and current evidence on the role of oxidative stress in diabetes as well as to discuss some key questions that are currently under discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wild S, Roglic G, Green A et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27:1047–1053.

    Article  PubMed  Google Scholar 

  2. Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. antioxid Redox Signal 2005; 7:1581–1587.

    Article  CAS  PubMed  Google Scholar 

  3. Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007:436030.

    Google Scholar 

  4. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40:405–412.

    Article  CAS  PubMed  Google Scholar 

  5. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48:1–9.

    Article  CAS  PubMed  Google Scholar 

  6. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414:813–820.

    Article  CAS  PubMed  Google Scholar 

  7. Ceriello A, Quatraro A, Giugliano D. Diabetes mellitus and hypertension: the possible role of hyperglycaemia through oxidative stress. Diabetologia 1993; 36:265–266.

    Article  CAS  PubMed  Google Scholar 

  8. Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes and therapeutic options. Int Rev Neurobiol 2002; 50:37–57.

    Article  CAS  PubMed  Google Scholar 

  9. Ceriello A, Quatraro A, Giugliano D. New insights on non-enzymatic glycosylation may lead to therapeutic approaches for the prevention of diabetic complications. Diabet Med 1992; 9:297–299.

    Article  CAS  PubMed  Google Scholar 

  10. Ceriello A, Quagliaro L, Catone B et al. Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 2002; 25:1439–1443.

    Article  CAS  PubMed  Google Scholar 

  11. Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. free Radic Biol Med 1991; 10:339–352.

    Article  CAS  PubMed  Google Scholar 

  12. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329:977–986.

    Google Scholar 

  13. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352:837–853.

    Google Scholar 

  14. Gabbay KH, Merola LO, Field RA. Sorbitolpathway: presence innerve and cord with substrate accumulation in diabetes. Science 1966; 151:209–210.

    Article  CAS  PubMed  Google Scholar 

  15. Engerman RL, Kern TS, Larson ME. Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 1994; 37:141–144.

    Article  CAS  PubMed  Google Scholar 

  16. koya D, king GL. Protein kinase C activation and the development of diabetic complications. Diabetes 1998; 47:859–866.

    Article  CAS  PubMed  Google Scholar 

  17. Xia P, Inoguchi T, kern TS et al. characterization of the mechanism for the chronic activation of diacylglycerol-proteinkinasecpathwayin diabetes and hypergalactosemia. Diabetes 1994;43:1122–1129.

    Article  CAS  PubMed  Google Scholar 

  18. Giardino I, Edelstein D, Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest 1994; 94:110–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shinohara M, thornalley PJ, Giardino I et al. overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J clin Invest 1998; 101:1142–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dyer DG, Dunn JA, thorpe SR et al. accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 1993; 91:2463–2469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McClain DA. Hexosamines as mediators of nutrient sensing and regulation in diabetes. J Diabetes complications 2002; 16:72–80.

    Article  PubMed  Google Scholar 

  22. Marshall S, Bacote V, traxinger rr. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol chem 1991; 266:4706–4712.

    CAS  PubMed  Google Scholar 

  23. Patti ME, Virkamaki A, landaker EJ et al. activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle. Diabetes 1999; 48:1562–1571.

    Article  CAS  PubMed  Google Scholar 

  24. Lee AY, chung SS. contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J 1999; 13:23–30.

    Article  CAS  PubMed  Google Scholar 

  25. Koya D, Jirousek MR, Lin YW et al. characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components and prostanoids in the glomeruli of diabetic rats. J Clin Invest 1997; 100:115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Studer RK, Craven PA, DeRubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes1993; 42:118–126.

    Article  CAS  PubMed  Google Scholar 

  27. Inoguchi T, Li P, umeda F et al. high glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C—dependent activation of NaD(P)H oxidase in cultured vascular cells. Diabetes 2000; 49:1939–1945.

    Article  CAS  PubMed  Google Scholar 

  28. Mclellan AC, Thornalley PJ, Benn J et al. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin Sci (lond) 1994; 87:21–29.

    Article  CAS  Google Scholar 

  29. abordo EA, Thornalley PJ. Synthesis and secretion of tumour necrosis factor-alpha by human monocytic THP-1 cells and chemotaxis induced by human serum albumin derivatives modified with methylglyoxal and glucose-derived advanced glycation endproducts. Immunol lett 1997; 58:139–147.

    Article  CAS  PubMed  Google Scholar 

  30. Vlassara H, Brownlee M, Manogue KR et al. Cachectin/TNF and IL-1 inducedbyglucose-modifiedproteins: Role in normal tissue remodeling. Science 1988; 240:1546–1548.

    Article  CAS  PubMed  Google Scholar 

  31. Wells L, Hart GW. O-GlcNAc turns twenty: functional implications for posttranslational modification of nuclear and cytosolic proteins with a sugar. FEBS lett2003; 546:154–158.

    Article  CAS  PubMed  Google Scholar 

  32. Brownlee M. the pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54:1615–1625.

    Article  CAS  PubMed  Google Scholar 

  33. Du XL, Edelstein D, Rossetti L et al. hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl acad Sci U S A 2000; 97:12222–12226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404:787–790.

    Article  CAS  PubMed  Google Scholar 

  35. Du X, Matsumura T, Edelstein D et al. Inhibition of GAPDH activitybypoly(ADP-ribose)polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003; 112:1049–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Korshunov SS, Skulachev VP, Starkov AA. high protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416:15–18.

    Article  CAS  PubMed  Google Scholar 

  37. Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999; 96:13978–13982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szabo C. Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacol res 2005; 52:60–71.

    Article  CAS  PubMed  Google Scholar 

  39. Obrosova IG. Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal 2005; 7:!1543–1552.

    Article  CAS  PubMed  Google Scholar 

  40. Obrosova IG. Diabetes and the peripheral nerve. Biochim Biophys Acta 2009; 1792:931–940.

    Article  CAS  PubMed  Google Scholar 

  41. Obrosova IG, Drel VR, Oltman CL et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2007; 293:E1645–E1655.

    Article  CAS  PubMed  Google Scholar 

  42. Mabley JG, Soriano FG. Role of nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic vascular dysfunction. Curr Vasc Pharmacol 2005; 3:247–252.

    Article  CAS  PubMed  Google Scholar 

  43. Obrosova IG, Drel VR, Pacher P et al. oxidative-nitrosative stress andpoly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes 2005; 54:3435–3441.

    Article  CAS  PubMed  Google Scholar 

  44. Obrosova IG,LiF, Abatan OIet al. Role of poly(ADP-ribose) polymerase activation in diabetic neuropathy. Diabetes 2004; 53:711–720.

    Article  CAS  PubMed  Google Scholar 

  45. Pacher P, Liaudet L, Soriano FG et al. the Role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 2002; 51:514!–521.

    Article  CAS  PubMed  Google Scholar 

  46. Pacher P, Mabley JG, Soriano FG et al. activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. Int J Mol Med 2002; 9:659–664.

    CAS  PubMed  Google Scholar 

  47. Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 2005; 7:1568–1580.

    Article  CAS  PubMed  Google Scholar 

  48. Szabo C, Zanchi A, Komjati K et al. Poly(ADP-ribose)polymeraseisactivatedinsubjectsatrisk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 2002; 106:2680–2686.

    Article  CAS  PubMed  Google Scholar 

  49. Drel VR, Pacher P, Stevens MJ et al. aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. free radic Biol Med 2006; 40:1454–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drel VR Pacher P, Vareniuk I et al. a peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 2007; 569:48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ilnytska O, Lyzogubov VV, Stevens MJ et al. Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 2006; 55:1686–1694.

    Article  CAS  PubMed  Google Scholar 

  52. Obrosova IG, Mabley JG, Zsengeller Z et al. Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB J 2005; 19:401–403.

    Article  CAS  PubMed  Google Scholar 

  53. Obrosova IG, Pacher P, Szabo C et al. aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 2005; 54:234–242.

    Article  CAS  PubMed  Google Scholar 

  54. Pacher P, Vaslin A, Benko R et al. a new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. J Pharmacol Exp ther 2004; 311:485–491.

    Article  CAS  PubMed  Google Scholar 

  55. Suarez-Pinzon WL, Mabley JG, Strynadka K et al. an inhibitor of inducible nitric oxide synthase and scavenger of peroxynitrite prevents diabetes development in NoD mice. J Autoimmun 2001; 16:449–455.

    Article  CAS  PubMed  Google Scholar 

  56. Beckman JS, Beckman TW, Chen J et al. apparenthydroxylradical production by peroxynitrite:implications for endothelial injury from nitric oxide and superoxide. Proc Natl acad Sci U S A 1990; 87:1620–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat rev Drug Discov 2007; 6:662–680.

    Article  CAS  PubMed  Google Scholar 

  58. Merenyi G, Lind J, Goldstein S et al. Peroxynitrous acid homolyzes into *oh and *No2 radicals. chem Res Toxicol 1998; 11:712–713.

    Article  CAS  PubMed  Google Scholar 

  59. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol rev 2007; 87:315–424.

    Article  CAS  PubMed  Google Scholar 

  60. Du Y, Smith Ma, Miller CM et al. Diabetes-induced nitrative stress in the retina and correction by aminoguanidine. J Neurochem 2002; 80:771–779.

    Article  CAS  PubMed  Google Scholar 

  61. Obrosova IG, Minchenko AG, Frank RN et al. Poly(ADP-ribose) polymerase inhibitors counteract diabetes-and hypoxia-induced retinal vascular endothelial growth factor overexpression. Int J Mol Med 2004; 14:55–64.

    CAS  PubMed  Google Scholar 

  62. Sugawara R, Hikichi T, Kitaya N et al. Peroxynitrite decomposition catalyst, FP15, andpoly(ADP-ribose) polymerase inhibitor, PJ34, inhibit leukocyte entrapment in the retinal microcirculation of diabetic rats. curr Eye Res 2004; 29:11–16.

    Article  CAS  PubMed  Google Scholar 

  63. Lenzen S, Drinkgern J, Tiedge M. low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996; 20:463–466.

    Article  CAS  PubMed  Google Scholar 

  64. Tiedge M, Lortz S, Drinkgern J et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46:1733–1742.

    Article  CAS  PubMed  Google Scholar 

  65. Eizirik DL, Mandrup-Poulsen T. A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 2001; 44:2115–2133.

    Article  CAS  PubMed  Google Scholar 

  66. Evans JL, Goldfine ID, Maddux BA et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003; 52:1–8.

    Article  CAS  PubMed  Google Scholar 

  67. Robertson RP. Oxidative stress and impaired insulin secretion in type 2 diabetes. curr opin Pharmacol 2006; 6:615–619.

    Article  CAS  PubMed  Google Scholar 

  68. Shimabukuro M, Ohneda M, Lee Y et al. Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest 1997; 100:290–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010; 327:296–300.

    Article  CAS  PubMed  Google Scholar 

  70. Masters SL, Dunne A, Subramanian SL et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhancedIL-1beta in type2diabetes.NatImmunol2010; 11:897–904.

    Google Scholar 

  71. Haffner SM. Epidemiology of insulin resistance and its relation to coronary artery disease. Am J cardiol 1999; 84:11J–14J.

    Article  CAS  PubMed  Google Scholar 

  72. Hanley AJ, Williams K, Stern MP et al. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 2002; 25:1177–1184.

    Article  PubMed  Google Scholar 

  73. Evans JL, Goldfine ID, Maddux BA et al. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr rev 2002; 23:599–622.

    Article  CAS  PubMed  Google Scholar 

  74. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51:7–18.

    Article  CAS  PubMed  Google Scholar 

  75. Krebs M, Roden M. Nutrient-induced insulin resistance in human skeletal muscle. Curr Med Chem 2004; 11:901–908.

    Article  CAS  PubMed  Google Scholar 

  76. Curtis R, Groarke A, Coughlan R et al. Psychological stress as a predictor of psychological adjustment and health status in patients with rheumatoid arthritis. Patient Educ Couns 2005; 59:192–198.

    Article  PubMed  Google Scholar 

  77. Muoio DM, Newgard CB. obesity-related derangements in metabolic regulation. annu rev Biochem 2006; 75:367–401.

    Article  CAS  PubMed  Google Scholar 

  78. Koves TR, Ussher JR, Noland RC et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. cell Metab 2008; 7:45–56.

    Article  CAS  PubMed  Google Scholar 

  79. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307:384–387.

    Article  CAS  PubMed  Google Scholar 

  80. Anderson EJ, Lustig ME, Boyle KE et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J clin Invest 2009.

    Google Scholar 

  81. Bonnard C, Durand A, Peyrol S et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J clin Invest 2008; 118:789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hancock CR, Chan DH, Chen M et al. high-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl acad Sci U S A 2008; 105:7815–7820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee HY, Choi CS, Birkenfeld AL et al. targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. cell Metab 2010; 12:668–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hoehn kL, Salmon AB, Hohnen-Behrens C et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl acad Sci U S A 2009; 106:17787–17792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saengsirisuwan V, Perez Fr, Sloniger JA et al. Interactions of exercise training and alpha-lipoicacid on insulin signaling in skeletal muscle of obese Zucker rats. AM J Physiol Endocrinol Metab 2004; 287:E529–E536.

    Article  CAS  PubMed  Google Scholar 

  86. Marette A. Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab care 2002; 5:377–383.

    Article  CAS  PubMed  Google Scholar 

  87. Marette A. Molecular mechanisms of inflammation in obesity-linked insulin resistance. Int J Obes Relat Metab Disord 2003; 27 (Suppl 3):S46–S48.

    Article  CAS  PubMed  Google Scholar 

  88. Sinha S, Perdomo G, Brown Nf et al. fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol chem 2004; 279:41294–41301.

    Article  CAS  PubMed  Google Scholar 

  89. Yuan M, Konstantopoulos N, Lee J et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001; 293:1673–1677.

    Article  CAS  PubMed  Google Scholar 

  90. Ceriello A, Quagliaro L, D’amico M et al. Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 2002; 51:1076–1082.

    Article  CAS  PubMed  Google Scholar 

  91. Shimabukuro M, Zhou YT, Levi M et al. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl acad Sci U S A 1998; 95:2498–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Elizalde M, Ryden M, van Harmelen V et al. Expression of nitric oxide synthases in subcutaneous adipose tissue of nonobese and obese humans. J lipid res 2000; 41:1244–1251.

    CAS  PubMed  Google Scholar 

  93. Stadler K, Bonini MG, Dallas S et al. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med 2008; 45:866–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hodara R, Norris Eh, Giasson BI et al. Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 2004; 279:47746–47753.

    Article  CAS  PubMed  Google Scholar 

  95. MacMillan-crow la, Crow JP, Kerby JD et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl acad Sci U S A 1996; 93:11853–11858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Quijano C, Hernandez-Saavedra D, Castro L et al. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J Biol chem 2001; 276:11631–11638.

    Article  CAS  PubMed  Google Scholar 

  97. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991; 11:81–128.

    Article  CAS  PubMed  Google Scholar 

  98. Perreault M, Marette A. Targeted disruption ofinducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 2001; 7:1138–1143.

    Article  CAS  PubMed  Google Scholar 

  99. Fujimoto M, Shimizu N, Kunii K et al. A Role for iNOS in fasting hyperglycemia and impaired insulin signaling in the liver of obese diabetic mice. Diabetes 2005; 54:1340–1348.

    Article  CAS  PubMed  Google Scholar 

  100. Charbonneau A, Marette A. INOS induction underlies lipid-induced hepatic insulin resistance in mice: Potential role of tyrosine nitration of insulin signaling proteins. Diabetes 2010.

    Google Scholar 

  101. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chemrestoxicol 1996; 9:836–844.

    CAS  Google Scholar 

  102. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys 1998; 356:1–11.

    Article  CAS  PubMed  Google Scholar 

  103. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res commun 2003; 305:776–783.

    Article  CAS  PubMed  Google Scholar 

  104. Lai Ek, McCay PB, Noguchi T et al. In vivo spin-trapping of trichloromethyl radicals formed from ccl4. Biochem Pharmacol 1979; 28:2231–2235.

    Article  CAS  PubMed  Google Scholar 

  105. Knecht KT, Mason RP. In vivo radical trapping and biliary secretion of radical adducts of carbon tetrachloride-derived free radical metabolites. Drug Metab Dispos 1988; 16:813–817.

    CAS  PubMed  Google Scholar 

  106. Knecht KT, Mason RP. In vivo spin trapping of xenobiotic free radical metabolites. Arch Biochem Biophys 1993; 303:185–194.

    Article  CAS  PubMed  Google Scholar 

  107. Sano T, Umeda F, Hashimoto T et al. Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 1998; 41:1355–1360.

    Article  CAS  PubMed  Google Scholar 

  108. Stadler K, Jenei V, von Bolcshazy G et al. Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med 2003; 35:1240–1251.

    Article  CAS  PubMed  Google Scholar 

  109. Stadler K, Bonini MG, Dallas S et al. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis. am J Physiol Endocrinol Metab 2008; 295:E456–E462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Detweiler CD, Deterding LJ, Tomer KB et al. Immunological identification of the heart myoglobin radical formed by hydrogen peroxide. free radic Biol Med 2002; 33:364–369.

    Article  CAS  PubMed  Google Scholar 

  111. Mason RP. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPo) to detect protein radicals in time and space with immuno-spin trapping. free radic Biol Med 2004; 36:1214–1223.

    Article  CAS  PubMed  Google Scholar 

  112. Cassina P, Cassina A, Pehar M et al. Mitochondrial dysfunction in SOD1G93a-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 2008; 28:4115–4122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bonini MG, Siraki AG, Atanassov BS et al. Immunolocalization of hypochlorite-induced, catalase-bound free radical formation in mouse hepatocytes. Free Radic Biol Med 2007; 42:530–540.

    Article  CAS  PubMed  Google Scholar 

  114. Chatterjee S, Ehrenshaft M, Bhattacharjee S et al. Immuno-spin trapping of a posttranslational carboxypeptidase B1 radical formed by a dual role of xanthine oxidase and endothelial nitric oxide synthase in acute septic mice. Free Radic Biol Med 2009; 46:454–461.

    Article  CAS  PubMed  Google Scholar 

  115. Ramirez DC, Mejiba SE, Mason RP. Copper-catalyzed protein oxidation and its modulation by carbon dioxide: enhancement of protein radicals in cells. J Biol Chem 2005; 280:27402–27411.

    Article  CAS  PubMed  Google Scholar 

  116. Ruggiero C, Ehrenshaft M, Cleland E et al. High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production. Am J Physiol Endocrinol Metab 2011; 300:E1047–E1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Grimsrud PA, Picklo MJ Sr., Griffin TJ et al. Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics 2007; 6:624–637.

    Article  CAS  PubMed  Google Scholar 

  118. Demozay D, Mas JC, Rocchi S et al. FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3t3-l1 adipocytes. Diabetes 2008; 57:1216–1226.

    Article  CAS  PubMed  Google Scholar 

  119. Thuraisingham RC, Nott CA, Dodd SM et al. Increased nitrotyrosine staining in kidneys from patients with diabetic nephropathy. kidney Int 2000; 57:1968–1972.

    Article  CAS  PubMed  Google Scholar 

  120. Cassina AM, Hodara R, Souza JM et al. Cytochrome c nitration by peroxynitrite. J Biol chem 2000; 275:21409–21415.

    Article  CAS  PubMed  Google Scholar 

  121. Bonini MG, Rota C, Tomasi A et al. The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 2006; 40:968–975.

    Article  CAS  PubMed  Google Scholar 

  122. Wrona M, Patel k, Wardman P. Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamine 123 And their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free radic Biol Med 2005; 38:262–270.

    Article  CAS  PubMed  Google Scholar 

  123. Rota C, Chignell CF, Mason RP. Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase:possible implications for oxidative stress measurements. Free Radic Biol Med 1999; 27:873–881.

    Article  CAS  PubMed  Google Scholar 

  124. Zielonka J, Kalyanaraman B. Hydroethidine-and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 2010; 48:983–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Stadler, K. (2013). Oxidative Stress in Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_21

Download citation

Publish with us

Policies and ethics